scholarly journals The effect of increasing CO2concentration and flow rate on amine still performance in meeting gas sale specifications

2018 ◽  
Vol 67 ◽  
pp. 03006
Author(s):  
Yuswan Muharam ◽  
Hendra Kristianto

The main purpose of this study is to examine the effect of increasing CO2removal and flow rate on performance of an amine still. The amine still is located in Field X in South East Sumatra at a new gas well producing gases with a rich CO2content. The still uses activated MDEA as the amine and has an IMTP 40-type packing column. Two film and desorption equilibrium curve theories were employed to analyse the amine still design conditions. Design equations were utilized to find the slope of the equilibrium curve. A slope of the equilibrium curve of 45° in the amine still is obtained in this study. The maximum liquid CO2composition of the amine still feedstock (xo) which can be separated to produce lean amine according to the specification design flow rate is 0.0307. The total flow rate of CO2-rich amine at xo= 0.029 is 761,157.6 kg/hour; the total flow rate of CO2-rich amine atxo= 0.0295 is 628,861.1 kg/hour; the total flow rate of CO2- rich amine at xo= 0.03 is 513,962.6 kg/hour; and the total flow rate of CO2-rich amine at xo= 0.0305 is 409,575.3 kg/hour.

Author(s):  
Svetlana Rudyk ◽  
Sami Al-Khamisi ◽  
Yahya Al-Wahaibi

AbstractFactors limiting foam injection for EOR application are exceptionally low rock permeability and exceedingly high salinity of the formation water. In this regard, foam formation using internal olefin sulfonate is investigated over a wide salinity range (1, 5, 8, 10, and 12% NaCl) through 10 mD limestone. The relationships between pressure drop (dP), apparent viscosity, liquid flow rate, total flow rate, salinity, foam texture, and length of foam drops at the outlet used as an indicator of viscosity are studied. Foaming is observed up to 12% NaCl, compared to a maximum of 8% NaCl in similar core-flooding experiments with 50 mD limestone and 255 mD sandstone. Thus, the salinity limit of foam formation has increased significantly due to the low permeability, which can be explained by the fact that the narrow porous system acts like a membrane with smaller holes. Compared to the increasing dP reported for highly permeable rocks, dP linearly decreases in almost the entire range of gas fraction (fg) at 1–10% NaCl. As fg increases, dP at higher total flow rate is higher at all salinities, but the magnitude of dP controls the dependence of apparent viscosity on total flow rate. Low dP is measured at 1% and 10% NaCl, and high dP is measured at 5, 8, and 12% NaCl. In the case of low dP, the apparent viscosity is higher at higher total flow rate with increasing gas fraction, but similar at two total flow rates with increasing liquid flow rate. In the case of high dP, the apparent viscosity is higher at lower total flow rate, both with an increase in the gas fraction and with an increase in the liquid flow rate. A linear correlation is found between dP or apparent viscosity and liquid flow rate, which defines it as a governing factor of foam flow and can be considered when modeling foam flow.


2002 ◽  
Vol 02 (03n04) ◽  
pp. 297-312
Author(s):  
WEN-JEI YANG ◽  
AMR EID ◽  
R. ECHIGO

An experimental study is performed to extract minute gas bubbles from liquids flowing in a simulated cardiopulmonary bypass system using a Venturi-aspirator unit. In other words, oxygen bubbles in oxygenated blood are simulated by air bubbles in water with AP30 (about same viscosity as whole blood). This study is intended to determine the feasibility of using a Venturi aspirator unit to extract minute gas bubbles from a simulated cardiopulmonary bypass system. Testing of the Venturi-type bubble extraction is carried out using three different test sections. Two Venturis are used, and a straight tube configuration is used as a control. The two Venturis are similar, with the exception that one has a longer inlet cone which causes the entering liquid to accelerate at a slower rate. Results are obtained for effectiveness of the aspirator unit as functions of total flow rate, extraction suction, suction pressure difference, and hydraulic head. It is concluded from the study that:(i) The effectiveness of the Venturis is typically between 90 and 100 percent. It increases with an increase in suction or suction pressure difference but decreases with an increase in total flow rate.(ii) The Venturi is most suitable for extraction of minute gas bubbles, especially for use with AP30 (whole blood), which yields substantially higher effectiveness than water.(iii) It is anticipated that a Venturi-aspirator unit can be superior to other bubble separation device as the cardiopulmonary bypass system for applications in extra corporeal blood oxygenation.


2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000096-000102
Author(s):  
Houari Cobas Gomez ◽  
Bianca Oliveira Agio ◽  
Jéssica Gonçalves da Silva ◽  
Natalia Neto Pereira Cerize ◽  
Adriano Marim de Oliveira ◽  
...  

Abstract The present work shows a ceramics microfluidic device for non-miscible fluids microemulsion generation using 3D serpentine micromixers. The technology used for device fabrication was Low Temperature Cofired Ceramics (LTCC) which allows us for complex, high temperature and pressure resistant 3D microfluidic devices. The proposed device aims to obtain microemulsion with controlled drop size, low dispersion index and high production volumes using Top-Down approach. Previous simulation work had showed 3D serpentine as one of the best structures for rapid mixing due the chaotic advection generated on every 90 deg direction change. This effect, when mixing two fluids as oil and water leads to streamlines pinching-off making possible drop generation. We have used this effect on our device. For the experimental section, it was fabricated a 3D serpentine mixer microfluidic device with working region suitable for variable total flow rate. For certain value of total flow rate, the microemulsion showed higher drop diameter and polydispersity values. In this region, no control could be done in order to obtain the same drop value with the same process parameters. Inside the working region drop diameter values repeatability was obtained. In this region our experimental results had showed a relation between drop diameter and total flow rate. As a total flow rate increase the drop diameter decrease due to a stronger chaotic advection effect. In the other hand, the polydispersity index also decreases. Microemulsions with average size lower than few micrometer or submicron were obtained. When compared with other reported devices, our device presented a production volume in the range of tens of ml/s for the same output microemulsion size.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2580
Author(s):  
Yang Zhou ◽  
Eric Lee ◽  
Ling-Tim Wong ◽  
Kwok-Wai Mui

Skyscrapers are common nowadays around the world, especially in cities with limited development area. In order to pump water up to the higher level of a skyscraper, a cascade water supply system has to be installed. Currently, cascade water supply systems are mainly designed based on practical experiences or requirements of existing standards/guidelines that, in fact, are not specifically for skyscrapers. However, thorough studies on cascade water supply system designs are still limited in the literature. This study proposes mathematical models and uses Monte Carlo simulations to evaluate the design flow rate of a typical cascade water supply system that feeds various appliances in a residential skyscraper in Hong Kong. Graphs that showed the correlations between the inflow rate in the supply pipe and water volume in the tank are obtained. While tank storage volume is confirmed, the design flow rate of the cascade water supply system can be determined from these graphs. The proposed mathematical models can also be applied to evaluate the design flow rate of cascade water supply systems in other types of skyscrapers (e.g., office, commercial building) as well as with the changes in water demand patterns in the models.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 126
Author(s):  
Houlin Liu ◽  
Ruichao Xia ◽  
Kai Wang ◽  
Yucheng Jing ◽  
Xianghui He

Experimental measurements to analyze the pressure fluctuation performance of a centrifugal pump with a vaned-diffuser, which its specific speed is 190. Results indicate that the main cause of pressure fluctuation is the rotor-stator interference at the impeller outlet. The head of the pump with vaned-diffuser at the design flow rate is 15.03 m, and the efficiency of the pump with a vaned-diffuser at the design flow rate reaches 71.47%. Pressure fluctuation decreases gradually with increasing distance from the impeller outlet. Along with the increase of the flow rate, amplitude of pressure fluctuation decreases. The amplitude of pressure fluctuation at the measuring points near the diffusion section of the pump body is larger than other measuring points. The variation tendency of pressure fluctuation at P1–P10 is the same, while there are wide frequency bands with different frequencies. The dominant frequency of pressure fluctuation is the blade passing frequency. The rotor-stator interference between the impeller and the vaned-diffuser gives rise to the main signal source of pressure fluctuation.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Houlin Liu ◽  
Kai Wang ◽  
Shouqi Yuan ◽  
Minggao Tan ◽  
Yong Wang ◽  
...  

In order to improve internal unsteady flow in a double-blade centrifugal pump (DBCP), this study used major geometric parameters of the original design as the initial values, heads at three conditions (i.e., 80% design flow rate, 100% design flow rate, and 120% design flow rate) as the constraints conditions, and the maximum of weighted average efficiency at the three conditions as the objective function. An adaptive simulated annealing algorithm was selected to solve the energy performance calculation model and the supertransitive approximation method was applied to fix optimal weight factors of individual objectives. On the basis of hydraulic performance optimization, three-condition automatic computational fluid dynamics (CFD) optimization of impeller meridional plane for the DBCP was realized by means of Isight software integrated Pro/E, Gambit, and Fluent software. The shroud arc radii R0 and R1, shroud angle T1, hub arc radius R2, and hub angle T2 on the meridional plane were selected as the design variables and the maximum of weighted average hydraulic efficiency at the three conditions was chosen as the objective function. Performance characteristic test and particle image velocimetry (PIV) measurements of internal flow in the DBCP were conducted. Performance characteristic test results show that the weighted average efficiency of the impeller after the three-condition optimization has increased by 1.46% than that of original design. PIV measurements results show that vortex or recirculation phenomena in the impeller are distinctly improved under the three conditions.


1991 ◽  
Author(s):  
Ronald D. Flack ◽  
Steven M. Miner ◽  
Ronald J. Beaudoin

Turbulence profiles were measured in a centrifugal pump with an impeller with backswept blades using a two directional laser velocimeter. Data presented includes radial, tangential, and cross product Reynolds stresses. Blade to blade profiles were measured at four circumferential positions and four radii within and one radius outside the four bladed impeller. The pump was tested in two configurations; with the impeller running centered within the volute, and with the impeller orbiting with a synchronous motion (ε/r2 = 0.016). Flow rates ranged from 40% to 106% of the design flow rate. Variation in profiles among the individual passages in the orbiting impeller were found. For several regions the turbulence was isotropic so that the cross product Reynolds stress was low. At low flow rates the highest cross product Reynolds stress was near the exit. At near design conditions the lowest cross product stress was near the exit, where uniform flow was also observed. Also, near the exit of the impeller the highest turbulence levels were seen near the tongue. For the design flow rate, inlet turbulence intensities were typically 9% and exit turbulence intensities were 6%. For 40% flow capacity the values increased to 18% and 19%, respectively. Large local turbulence intensities correlated with separated regions. The synchronous orbit did not increase the random turbulence, but did affect the turbulence in the individual channels in a systematic pattern.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401982590 ◽  
Author(s):  
Kai Wang ◽  
Yu-cheng Jing ◽  
Xiang-hui He ◽  
Hou-lin Liu

In order to enhance the efficiency of centrifugal pump, the structure of a centrifugal pump with vaned diffuser, whose specific speed is 190, was numerically improved by trimming back-blades of impeller and smoothing sharp corner in annular chamber. The energy performance, the internal flow field, the axial force, the radial force, and the pressure pulsation of the pump were analyzed. Results show that efficiency of the improving scheme 1 under the design flow rate is 77.47%, which can balance 69.82% of the axial force, while efficiency of the improving scheme 2 under the design flow rate is the maximum, which could still balance 62.74% of the axial force. The pressure pulsations of the improving scheme 2 at the typical monitoring points are less than that of the improving scheme 1 and the original scheme. The difference of the radial force peak between the improving scheme 1 and the improving scheme 2 is very small. The vector distributions of the radial force of the improving scheme 1 and the improving scheme 2 are more uniform than that of the original scheme. Considering the efficiency, pressure pulsation, and axial force, experiment measurements on the improving scheme 2 were carried out to verify the effectiveness of the improvement result. Results of energy performance experiment show that efficiency of the improving scheme 2 under the design flow rate is 76.48%, which is 5.26 percentage points higher than that of the original scheme.


2019 ◽  
Vol 947 ◽  
pp. 40-46
Author(s):  
Hyun Ji Kim ◽  
Sung Hoon Kim

The formation of aligned carbon microcoils could be achieved using C2H2 as a source gas and CS2 as an incorporated additive gas under thermal chemical vapor deposition system. To elucidate the ratio of C2H2/CS2 for the formation of the aligned carbon microcoils, the CS2 flow rate was first manipulated under the identical C2H2 flow rate (500sccm) condition. The formation and the alignment of carbon microcoils could be only achieved under the ratio of C2H2/CS2 = 33.3 condition, namely the flow rates of CS2 = 15sccm and C2H2= 500sccm. The total flow rate of the used gases was varied under the identical C2H2/CS2 flow rate ratio (33.3) condition. The C2H2 flow rate was manipulated under the identical CS2 flow rate (15sccm) condition. It was found that the formation and the alignment of carbon microcoils could be only achieved under the condition of 15sccm of CS2 flow rate in the range of 200 ~ 500sccm of C2H2 flow rate, regardless of the flow rate ratio of C2H2/CS2 and the total flow rate. The crystal structure of the well-aligned CMCs reveals the increase in the (002) peak in XRD spectrum for the aligned carbon microcoils, indicating the existence of the more regular structure in the aligned carbon microcoils. Based on these results, the cause for the formation of the aligned carbon microcoils only in the case of the CS2 flow rate = 15sccm with the imaginary pictures for the flow rate ratio of C2H2/CS2 just above the substrate were proposed.


1992 ◽  
Vol 114 (2) ◽  
pp. 350-358 ◽  
Author(s):  
R. D. Flack ◽  
S. M. Miner ◽  
R. J. Beaudoin

Turbulence profiles were measured in a centrifugal pump with an impeller with backswept blades using a two-directional laser velocimeter. Data presented include radial, tangential, and cross product Reynolds stresses. Blade-to-blade profiles were measured at four circumferential positions and four radii within and one radius outside the four-bladed impeller. The pump was tested in two configurations: with the impeller running centered within the volute, and with the impeller orbiting with a synchronous motion (ε/r2 = 0.016). Flow rates ranged from 40 to 106 percent of the design flow rate. Variation in profiles among the individual passages in the oribiting impeller were found. For several regions the turbulence was isotropic so that the cross product Reynolds stress was low. At low flow rates the highest cross product Reynolds stress was near the exit. At near-design conditions the lowest cross product stress was near the exit, where uniform flow was also observed. Also, near the exit of the impeller the highest turbulence levels were seen near the tongue. For the design flow rate, inlet turbulence intensities were typically 9 percent and exit turbulence intensities were 6 percent. For 40 percent flow capacity the values increased to 18 and 19 percent, respectively. Large local turbulence intensities correlated with separated regions. The synchronous orbit did not increase the random turbulence, but did affect the turbulence in the individual channels in a systematic pattern.


Sign in / Sign up

Export Citation Format

Share Document