scholarly journals Alumina-hydroxyapatite nanocomposites and their applications for the removal of phenolic compounds from water: A comparative study

2020 ◽  
Vol 150 ◽  
pp. 02008
Author(s):  
Khadija Bouiahya ◽  
A. Oulguidoum ◽  
Abdelaziz Laghzizil

This study develops cost-effective adsorbents for the treatment of water contaminated with phenolic compounds, including Phenol (Ph), 2-Chlorophenol (2-CPh), and 2-Nitrophenol (2-NPh). Therefore, Alumina-Hydroxyapatite composites were prepared from natural phosphate in the presence of Al3+ ions characterized by various techniques and then the supplementary active sites on their surface may make a better contribution to the phenols remediation. It was concluded that the specific surface area, surface charge and Al content were very suitable for the more adsorptive removal. Results show that the 2-chlorophenol is the more affinity versus hydroxyapatite and its formed composites compared to 2-NPh and Ph in order 2-CPh>2-NPh>Ph.

Author(s):  
Yaqi Yang ◽  
Ziqiang Shao ◽  
Feijun Wang

Abstract Due to the low specific capacitance and small specific surface area of conventional carbon materials used as electrode materials for double-layer capacitors, the search for more ideal materials and ingenious preparation methods remains a major challenge. In this study, fractional porous carbon nanosheets were prepared by co-doping Fe and N with chitosan as nitrogen source. The advantage of this method is that the carbon nanosheets can have a large number of pore structures and produce a large specific surface area. The presence of Fe catalyzes the graphitization of carbon in the carbon layer during carbonization process, and further increases the specific surface area of the electrode material. This structure provides an efficient ion and electron transport pathway, which enables more active sites to participate in the REDOX reaction, thus significantly enhancing the electrochemical performance of SCs. The specific surface area of CS-800 is up to 1587 m2 g−1. When the current density is 0.5 A g−1, the specific capacitance of CS-800 reaches 308.84 F g−1, and remains 84.61 % of the initial value after 10,000 cycles. The Coulomb efficiency of CS-800 is almost 100 % after a long cycle, which indicates that CS-800 has more ideal double-layer capacitance and pseudo capacitance.


2022 ◽  
Author(s):  
Kainan Li ◽  
Ke Zheng ◽  
Zhifang Zhang ◽  
Kuan Li ◽  
Ziyao Bian ◽  
...  

Abstract Construction of metal selenides with a large specific surface area and a hollow structure is one of the effective methods to improve the electrochemical performance of supercapacitors. However, the nano-material easily agglomerates due to the lack of support, resulting in the loss of electrochemical performance. Herein, we successfully design a three-dimensional graphene (3DG) encapsulation-protected hollow nanoboxes (CoSe2-SnSe2) composite aerogel (3DG/CoSe2-SnSe2) via a co-precipitation method coupled with self-assembly route, followed by a high temperature selenidation strategy. The obtained aerogel possesses porous 3DG conductive network, large specific surface area and plenty of reactive active sites. It could be used as a flexible and binder-free electrode after a facile mechanical compression process, which provided a high specific capacitance of 460 F g-1 at 0.5 A g-1, good rate capability of 212.7 F g-1 at 10 A g-1, and excellent cycle stability due to the fast electron/ion transfer and electrolyte diffusion. With the as-prepared 3DG/CoSe2-SnSe2 as positive electrodes and the AC (activated carbon) as negative electrodes, an asymmetric supercapacitor (3DG/CoSe2-SnSe2//AC) was fabricated, which delivered a high specific capacity of 38 F g-1 at 1A g-1 and an energy density of 11.89 W h kg-1 at 749.9 W kg-1, as well as a capacitance retention of 91.1% after 3000 cycles. This work provides a new method for preparing electrode material.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Asif Hussain ◽  
Jiebing Li ◽  
Jun Wang ◽  
Fei Xue ◽  
Yundan Chen ◽  
...  

Herein we demonstrate first report on fabrication, characterization, and adsorptive appraisal of graphene/cellulose nanofibers (GO/CNFs) monolith for methylene blue (MB) dye. Series of hybrid monolith (GO/CNFs) were assembled via urea assisted self-assembly method. Hybrid materials were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, Raman spectroscopy, elemental analysis, thermogravimetric curve analysis, specific surface area, surface charge density measurement, and compressional mechanical analysis. It was proposed that strong chemical interaction (mainly hydrogen bonding) was responsible for the formation of hybrid assembly. GO/CNFs monolith showed mechanically robust architecture with tunable pore structure and surface properties. GO/CNFs adsorbent could completely remove trace to moderate concentrations of MB dye and follow pseudo-second-order kinetics model. Adsorption isotherm behaviors were found in the following order: Langmuir isotherm > Freundlich isotherm > Temkin isotherm model. Maximum adsorption capacity of 227.27 mg g−1 was achieved which is much higher than reported graphene based monoliths and magnetic adsorbent. Incorporation of nanocellulose follows exponential relationship with dye uptake capacities. High surface charge density and specific surface area were main dye adsorptive mechanism. Regeneration and recycling efficiency was achieved up to four consecutive cycles with cost-effective recollection and zero recontamination of treated water.


2020 ◽  
Vol 44 (18) ◽  
pp. 7417-7423
Author(s):  
Jiannan Cai ◽  
Xiaofeng Zhang ◽  
Yi Zhang ◽  
Mingxing Yang ◽  
Baohua Huang ◽  
...  

The enhanced electrocatalytic properties of rGO/TiO2NTs for the ORR are a result of increased specific surface area, number of active sites and accelerated electron conductivity.


Clay Minerals ◽  
2015 ◽  
Vol 50 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Bo Xue ◽  
Hongmei Guo ◽  
Lujie Liu ◽  
Min Chen

AbstractA new yttrium-zirconium-pillared montmorillonite (Y-Zr-MMT), was synthesized, characterized and used as a Ce catalyst support. The Y-Zr-MMT is a good support for dispersing cerium active sites and it is responsible for the high activity in the total oxidation of acetone, toluene and ethyl acetate. The Y-Zr-MMT shows greater advantages than the conventional alumina/cordierite honeycomb supports such as large specific surface area, lower cost and easier preparation. Catalytic tests demonstrated that Ce/Y-Zr-MMT (Ce loading 8.0%) was the most active, with the total oxidation of acetone, toluene and ethyl acetate being achieved at 220, 300 and 220°C, respectively. The catalyst displayed better activity for the oxidation of acetone and ethyl acetate than a conventional, supported Pd-catalyst under similar conditions. The special structure of the yttrium-doped zirconium-pillared montmorillonite can strengthen the interaction between the CeO2 and Zr-MMT support and improve the dispersion of the Ce particles, which enhances the catalytic activity for the oxidation of VOCs. The new catalyst, 8.0%Ce/Y-Zr-MMT, could be promising for industrial applications due to its high catalytic activity and low cost. The support and the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET specific surface area measurements.


Author(s):  
Chenyu Liu ◽  
Haitong Wei ◽  
Yanhui Gao ◽  
Ning Wang ◽  
Xiaoying Yuan ◽  
...  

Abstract Metal-Organic Frameworks (MOFs) have unique properties and stable structure, which have been widely used as templates/precursors to prepare well-developed pore structure and high specific surface area materials. In this article, an innovative and facile method of crystal reorganization was designed by using MOFs as sacrificial templates to prepare LDH nano-layer sheet structure through a pseudomorphic conversion process under alkaline conditions. The obtained CoMn-LDH and CoFe-LDH catalysts broke the ligand of MOFs and reorganized the structure on the basis of retaining a high specific surface area and a large number of pores, which have higher specific surface area and well-developed pore structure than LDH catalysts prepared by traditional methods, and thus provide more active sites to activate PMS. Due to the unique framework structure of MOFs, the MOF derived CoMn-LDH and CoFe-LDH catalysts could provide more active sites to activate PMS, and achieve a 2, 4-dichlorophenol (2, 4-DCP) degradation of 99.3% and 99.2% within 20 min, respectively. Besides, the two LDH catalysts displayed excellent degradation performance for bisphenol A (BPA), ciprofloxacin (CIP) and 2, 4-dichlorophenoxyacetic acid (2, 4-D). XPS indicated that the valence state transformation of metal elements participated in PMS activation. EPR manifested sulfate radical () and singlet oxygen (1O2) were the main species for degrading pollutants. In addition, after the three-cycle experiment, the CoMn-LDH and CoFe-LDH catalysts also showed long-term stability with a slight activity decrease in the third cycle. The phytotoxicity assessment determined by the germination of mung beans proved that PMS activation by MOFs-derived LDH catalyst can basically eliminate the phytotoxicity of 2, 4-D solution. This research not only developed high-activity LDH catalysts for PMS activation, but also expanded the environmental applications of MOFs derivants.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1390 ◽  
Author(s):  
Tiekun Jia ◽  
Junchao An ◽  
Dongsheng Yu ◽  
Jili Li ◽  
Fang Fu ◽  
...  

Improving the photocatalytic performance of multi-component photocatalysts through structural modulation and band alignment engineering has attracted great interest in the context of solar energy utilization and conversion. In our work, Zn2SnO4/SnO2 hierarchical architectures comprising nanorod building block assemblies were first achieved via a facile solvothermal synthesis route with lysine and ethylenediamine (EDA) as directing agents, and then chemically etched in NaOH solution to enlarge the surface area and augment active sites. The etched Zn2SnO4/SnO2 hierarchical architectures were further decorated by Cu2O nanoparticles though an in situ chemical deposition method based on band alignment engineering. In comparison with unetched Zn2SnO4/SnO2, the specific surface area of Zn2SnO4/SnO2/Cu2O hierarchical architectures became larger, and the responsive region and absorbance intensity became wider and higher in the whole visible-light range. Zn2SnO4/SnO2/Cu2O hybrid photocatalysts presented enormously improved visible-light photocatalytic behaviour for Rhodamine B (RhB) decomposition. The enhancement of photocatalytic behaviour was dominantly attributed to the synergy effect of the larger specific surface area, higher light absorption capacity, and more effective photo-induced charge carrier separation and migration. A proposed mechanism for the enormously promoted photocatalytic behaviour is brought forth on the basis of the energy-band structure combined with experimental results.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2928
Author(s):  
Naushad Ahmad ◽  
Fahad Alharthi ◽  
Manawwer Alam ◽  
Rizwan Wahab ◽  
Salim Manoharadas ◽  
...  

The development of a transition-metal-based catalyst with concomitant high activity and stability due to its distinguishing characteristics, yielding an abundance of active sites, is considered to be the bottleneck for the dry reforming of methane (DRM). This work presents the catalytic activity and durability of SrNiO3 and CeNiO3 perovskites for syngas production via DRM. CeNiO3 exhibits a higher specific surface area, pore volume, number of reducible species, and nickel dispersion when compared to SrNiO3. The catalytic activity results demonstrate higher CH4 (54.3%) and CO2 (64.8%) conversions for CeNiO3, compared to 22% (CH4 conversion) and 34.7% (CO2 conversion) for SrNiO3. The decrease in catalytic activity after replacing cerium with strontium is attributed to a decrease in specific surface area and pore volume, and nickel active sites covered with strontium carbonate. The stability results reveal the deactivation of both the catalysts (SrNiO3 and CeNiO3) but SrNiO3 showed more deactivation than CeNiO3, as demonstrated by deactivation factors. The catalyst deactivation is mainly attributed to carbon deposition and these findings are verified by characterizing the spent catalysts.


Sign in / Sign up

Export Citation Format

Share Document