scholarly journals Testing of the combined structural elements of support of a mine opening

2020 ◽  
Vol 168 ◽  
pp. 00028
Author(s):  
Grygorii Gasii ◽  
Olena Hasii ◽  
Vita Klimenko

The stress-strain state of test specimens of the new combined system of support of a mine opening under imposed loads is studied. The test specimens are compound modular elements of the offered earlier combined system of support. Every single modular element is the regular quadrangular pyramid, consisting of a reinforced concrete slab and steel tube web members. The slab and web members are gathered in a complete element while concreting the slab. The tension sensor’s method of experimental research is applied to the test of specimens. The test of specimens is carried out under the load imposed with a hydraulic press. The load is set so that to imitate service conditions, including the most adverse. Design features of the offered support and test specimens are presented. Details of the support and its elements, sizes, production technology and assemblies are briefly described. The test methodology of specimens and the analysis of the results are presented. The load-carrying abilities of test specimens under the concentrated force and uniform load are obtained. Break down of slab and connection between the web members and the slab are the results of the test of the specimens under the concentrated force and the uniform load respectively.

2014 ◽  
Vol 606 ◽  
pp. 229-232 ◽  
Author(s):  
Petr Tej ◽  
Vítězslav Vacek ◽  
Jiří Kolísko ◽  
Jindřich Čech

The paper focuses on a computer nonlinear analysis of the formation and development of cracks in a concrete slab exposed to a uniform continuous load on the lower surface. The analysis is based on an actual example of the formation and development of cracks in a basement slab exposed to ground water buoyancy.


Author(s):  
Sarah Jaber ◽  
Mounir Mabsout ◽  
Kassim Tarhini

Bridge specifications do not consider the effect of parapet stiffness in the analysis and design of reinforced concrete slab bridges. This paper performs a parametric investigation using finite element analysis (FEA) to study the effects of parapet stiffness on live load-carrying capacity of two-span, three-and four-lane concrete slab bridges. This study analyzed 96 highway bridge cases with varied parameters such as span-length, bridge width, and parapet stiffness within practical ranges. Reinforced concrete parapets or railings, built integrally with the bridge deck, were placed on one and/or both sides of bridge deck. The longitudinal bending moments calculated using the FEA results were compared with reference bridge cases without parapets, as well as AASHTO Standard and LRFD specifications. The FEA results presented in this paper showed that the presence of concrete parapets reduces the negative bending moments by 15% to 60% and the positive bending moments by 10% to 45%. The reduction in longitudinal bending moments can mean an increase in the load-carrying capacity of such bridges depending on the parapet stiffness. This investigation can assist engineers in modeling the actual bridge geometry more accurately for estimating the load-carrying capacity of existing concrete bridges. Hence, new bridges can be designed by considering the presence of concrete parapets. Parapets can be used as an alternative for strengthening existing one and two-span reinforced concrete slab bridges.


Fibers ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 25
Author(s):  
Syafiqah Shahrul Aman ◽  
Bashar S. Mohammed ◽  
Mubarak Abdul Wahab ◽  
Abdullah Anwar

Openings in reinforced concrete (RC) slabs are not commonly prescribed in design codes. Even when they are, they raise concerns regards to the size of the openings and the location of the applied loads. Lack of sufficient information about the load-carrying capacity of the slabs with openings and performance is another concern. Hence, this research addresses the structural behavior of slabs with openings coated with Carbon Fiber Reinforced Polymer (CFRP) sheet. In the experimental part, ten slabs were cast with a dimension of 1000 mm × 530 mm × 25 mm, among which nine slabs had openings and one slab was without opening (control slab). The configuration of the CFRP sheet includes coating in the form of single, double, and triple layers. Experimental results show that the slab with a triple coating of the CFRP layer offers the maximum resistance towards the loading rate. Moreover, with the increase in CFRP layers, the value of deflection is minimized.


2014 ◽  
Vol 897 ◽  
pp. 157-160
Author(s):  
Peter Kotes

FRP (Fiber Reinforced Plastic) materials are corrosion resistant not requiring any specific treatment. The utilization of these materials is expanding. New research works have started to focus on using these materials on self-contained formwork in composite systems. It allows decreasing the concrete cover on minimum value just to assure sufficient bonding between reinforcement and concrete (the influence of aggressive environment is minimal). Moreover, the stay-in-place formwork is self-contained. It means using this system as formwork during casting of concrete and another supporting structure is not needed. The paper is focused on experimental analysis of stay-in-place GFRP (Fiberglass Reinforced Plastic) formwork in composite system (three-functional GFRP formwork and reinforced concrete slab – RC slab) and its use on floors in building structures. The load-carrying capacity of the composite system is highly influenced by quality of cohesion between GFRP formwork and concrete. This cohesion was investigated by using “push tests”. The results from experimental push tests were compared with the numerical model and also will serve for numerical modelling of real bonding of the girders.


2021 ◽  
Vol 30 (1) ◽  
pp. 20-27
Author(s):  
G. Gasii ◽  
◽  
O. Hasii ◽  

The stress-strain state of test specimens of the new combined structure of support of a mine opening under loads is studied. The test specimens are compound modular elements of the designed earlier combined structure of support. Every single modular element is the triangular prism, consisting of a reinforced concrete slab and a steel grid made of tube web members. The slab and web members are grouped in a complete element while concreting the slab. The tension sensor’s method of experimental investigation is applied to the testing specimens. Tests of specimens are carried out under the load forced with cargoes. Loads are set in the ways that to simulate service conditions, counting the most adverse. Design features of the support and test specimens are shown. Particulars of the support and its elements, production technology, assemblies as well as the sizes are briefly described. The methodology of testing specimens, as well as the analysis of the outcomes, are presente.


2018 ◽  
Vol 761 ◽  
pp. 169-172 ◽  
Author(s):  
Hynek Lahuta ◽  
Eva Hrubesova ◽  
Marek Mohyla ◽  
Lukáš Duris ◽  
Miroslav Pinka

The paper is focused on the interaction of the fibre reinforced concrete slab and the subsoil using both the results of experimental measurements on the experimental stand. Performed experimental measurements include monitoring of the concentrically loaded concrete slab with the dimensions of 2 m x 2 m and thickness of 0.15 m. This slab is in the interaction with subsoil of sandy clay character. The experimental load is applied in sequential steps by using a hydraulic press. During the tests the strain gauges and hydrostatic levelling method were used for the monitoring of the settlements of the slab. The contact stresses and the stresses corresponding to a certain depth below the slab were monitored by using a flat pressure cells. In the conclusion of this paper there are formulated the basic aspects of concrete slab-subsoil interaction, the results of various performed experimental measurements and the comparison of stress below the surface resulted from interaction of soil and slab of different degree of reinforcement.


2015 ◽  
Vol 769 ◽  
pp. 97-100
Author(s):  
Oldrich Sucharda ◽  
Jan Kubosek

The paper deals with the designing and analysing of concrete structures. A particular attention is paid to a multi-segment slab made from reinforced concrete. The purpose of the paper is to evaluate, in a non-linear analysis, impacts of input parameters of the concrete on the real load-carrying capacity of the ceiling which has been designed originally in DeMKP. FEM software applications have been used in the analysis. This is an in-house application DeMKP for designing the systems in line with standardised procedures. Another software is ATENA Science which can be used for non-linear analyses.


2020 ◽  
Vol 10 (2) ◽  
pp. 125-132
Author(s):  
S.C. Floruț ◽  
D.A. Popescu ◽  
V. Stoian ◽  
D. Daniel ◽  
T. Nagy-György ◽  
...  

AbstractThe paper presents the results of experimental investigations and numerical analyses performed on reinforced concrete flat slabs. Two tests were carried out on two flat slab specimens designed without specific shear reinforcement. The present paper deals only with the experimental behaviour and numerical modelling of such slabs, this representing the initial part of a larger study which aims to evaluate the shear capacity of such deficient slabs resulted from faulty design or execution and to identify viable and efficient strengthening solutions. ATENA finite element software package was used to numerically model the behaviour of the specimens. A very good agreement was achieved between the results of experimental investigations and numerical modelling with deviations of 0.2% in terms of maximum load carrying capacity and of 7% in terms of corresponding displacement. The specimens were able to carry loads of more than 950kN, larger than those evaluated using designated Eurocodes, displaying a safety factor of 2.72.


Author(s):  
Sarah Jaber ◽  
Mounir Mabsout ◽  
Kassim Tarhini

The American Association of State Highway and Transportation Officials (AASHTO) Standard Specifications or LRFD do not account for the presence of railings in the analysis and design of concrete slab bridges. This paper presents a parametric investigation of the influence of railing stiffness on the wheel load distribution in simply-supported, two-equal-span, and one-and two-lane reinforced concrete slab bridges using the finite-element analysis (FEA). A total of 160 bridge cases were modeled and bridge parameters such as span lengths and slab widths were varied within practical ranges. Various railing stiffness were investigated by assuming railings built integrally with the bridge deck and placed on both edges of the bridge. The FEA wheel load distribution and longitudinal bending moments were compared with reference bridge slabs without railings as well as to the AASHTO design procedures. Accordingly, the presence of railings reduced the FEA negative moments by a range of 54% to 72% and the FEA positive moments by a range of 40% to 61% depending on the railing stiffness. This reduction in slab moments due to the presence of railings could be considered an increase in the bridges load carrying capacity. The results of this investigation will assist bridge engineers in better designing and/or evaluating concrete slab bridges in the presence of railings. This could also be considered an alternative for strengthening existing concrete slab bridges.


A combination of outstanding advantages of concrete filled steel tube (CFST) column with reinforced concrete (RC) flat slab creates the effective and potential structure to replace traditional reinforced concrete frame structures in high-rise buildings. The CFST column – RC slab connection is the key factor for this structure type to work properly and effectively. Currently, the studies mainly focus on inner CFST column and RC slab connection, there are very few experimental studies on connection of edge or corner CFST columns and RC flat slab. This paper proposes edge and corner CFST columns to RC flat slab connection structures using H-shaped shear head and then conducts two large size tests to investigate behaviors of the connection.


Sign in / Sign up

Export Citation Format

Share Document