scholarly journals Thermal analysis of water confined in fully and partially saturated cement paste

2020 ◽  
Vol 172 ◽  
pp. 17008
Author(s):  
Dalia Bednarska ◽  
Marcin Koniorczyk

The main object of the presented research is to apply thermal analysis in order to investigate microstructure of hardened cement paste. The test is conducted by means of differential scanning calorimetry on samples stored in various relative humidity levels as well as the fully saturated ones. The obtained results describe water solidification beginning at several different temperatures, which implies complex nature of cement paste microstructure. The recorded thermograms consist of two main peaks, which clearly indicate the division into capillary and gel pores. Additionally, the thermodynamic properties of actual pore solution confined in cement matrix are investigated. The obtained results indicate ions present in the liquid strongly affects its phase transition temperature as well as amount of ice formed during such the phase change.

2000 ◽  
Vol 6 (4) ◽  
pp. 415-428
Author(s):  
O. Wowra ◽  
M.J. Setzer

Abstract Besides the formation of Friedel salt the transport and binding of chlorides in concrete is mainly defined by the electrochemical double layer at the interface between cement matrix and pore solution. Due to the alkaline pore solution the surface of hardened cement paste is negatively charged which may change to positive values by the potential regulating calcium ions. Inverting of the surface charge leads to an attraction of anions and therefore, to an adsorption of chloride ions in the diffuse part of the electrochemical double layer. Influence from outside like sulphates and carbon dioxide may lead to a decomposition of Friedel salt. Apart from these effect temperature, pH-value and certain environmental conditions affects the electrochemical double layer as well. The chloride equilibrium is mainly controlled by adsorbed ions in the electrochemical double layer. The model presented here is relevant for the assessment of ion transport processes in mineral building materials. Continuing investigations may lead to optimize transport models and a better evaluation of the critical chloride threshold value in reinforced concrete.


2019 ◽  
Vol 953 ◽  
pp. 209-214
Author(s):  
Yi Teng Zhang ◽  
Lian Zuo ◽  
Jin Chao Yang ◽  
Wei Xia Zhao ◽  
Xiang Xiong Zeng

The main objective of this study is to investigate the effect of cementitious capillary crystalline waterproofing (CCCW) material on the water impermeability and microstructure of concrete. The water impermeability of concrete covered with or without CCCW material was tested according to the Chinese standard GB 18445-2012. The results indicate that concretes coated with CCCW material showed much higher water impermeability than blank ones, and the ratio of water impermeability pressure between them reached 275. The samples obtained in various depths of hardened cement paste specimens with or without CCCW coating were analyzed through scanning electron microscopy (SEM) and thermogravimetry-differential scanning calorimetry (TG-DSC), to study the differences in microstructure and hydration products. The results present that after a 28-day standard curing, there were lots of ettringite crystals and CaCO3 formed in the paste in 1 cm from the coating, but the action depth of the CCCW coating could not reach 3 cm. The ettringite and CaCO3 is precipitated in the pore structure of cement matrix and filling the voids, which leads to the significant enhancement in water impermeability.


2008 ◽  
Vol 385-387 ◽  
pp. 281-284 ◽  
Author(s):  
In Seok Yoon

The purpose of this study is to establish a simple approach to compute the chloride diffusivity of (non)carbonated concrete. The chloride diffusivity of concrete should is defined, based on engineering and scientific knowledge of cement and concrete materials. In this paper, parameters affecting the chloride diffusivity, such as the diffusivity in pore solution, tortuosity, micro-structural properties of hardened cement paste, volumetric portion of aggregate, are taken into consideration in the calculation of the chloride diffusivity of noncarbonated concrete. For carbonated concrete, reduced porosity due to carbonation is calculated and used for calculating the chloride diffusivity. The results are compared with experimental data and previous research works.


2014 ◽  
Vol 1081 ◽  
pp. 279-283 ◽  
Author(s):  
Nan Zhang ◽  
Juan Liao ◽  
Tao Zhang ◽  
Wen Zhan Ji

Thermal deformation of concrete at low temperature expands from-20°C to-50°C and contracts from-30°C to-10°C. Based on previous studies, the paper tries to explain the deformaion trend by analyzing freezing point of bulk solution and pore solution in saturated hardened cement paste. The result shows that it is critical to thermal deformation of cement-based materials at low temperature that pore solution in the pores smaller than 8 nm freezes.


2021 ◽  
Vol 54 (5) ◽  
Author(s):  
Matthias Müller ◽  
Horst-Michael Ludwig ◽  
Marianne Tange Hasholt

AbstractScaling of concrete due to salt frost attack is an important durability issue in moderate and cold climates. The actual damage mechanism is still not completely understood. Two recent damage theories—the glue spall theory and the cryogenic suction theory—offer plausible, but conflicting explanations for the salt frost scaling mechanism. The present study deals with the cryogenic suction theory, which assumes that freezing concrete can take up unfrozen brine from a partly frozen deicing solution during salt frost attack. According to the model hypothesis, the resulting saturation of the concrete surface layer intensifies the ice formation in this layer and causes salt frost scaling. In this study an experimental technique was developed that makes it possible to quantify to which extent brine uptake can increase ice formation in hardened cement paste (used as a model material for concrete). The experiments were carried out with low temperature differential scanning calorimetry, where specimens were subjected to freeze–thaw cycles while being in contact with NaCl brine. Results showed that the ice content in the specimens increased with subsequent freeze–thaw cycles due to the brine uptake at temperatures below 0 °C. The ability of the hardened cement paste to bind chlorides from the absorbed brine at the same time affected the freezing/melting behavior of the pore solution and the magnitude of the ice content.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 529 ◽  
Author(s):  
Chi-Yao Chen ◽  
Maw-Tien Lee

Many studies have used rubber as an additive to form a cement-matrix composite (rubcrete). However, rubcrete has a lower mechanical strength than standard concrete. To improve the properties of rubcrete, this study performed surface modifications on crumb rubber through a partial oxidization reaction. The optimal ratio of air to nitrogen was determined by experiments to be 1:4. Fourier transform infrared spectroscopy (FT-IR) was used to identify the functional groups on the surface of the crumb rubber. A colloidal probe of calcium silicate hydrate (C–S–H) was prepared, and the intermolecular interactions between the rubber and the C–S–H were measured using an atomic force microscope (AFM). The experimental results showed that the partially oxidized crumb rubber contained more hydrophilic S–O bonds. The intermolecular force between C–S–H and treated rubber increased by 23% compared to the force between the original rubber and C–S–H. The compressive strength of the hardened cement paste (56 days) with the treated crumb rubber increased 50% in comparison with that of the hardened cement paste with the as-received crumb rubber.


1995 ◽  
Vol 411 ◽  
Author(s):  
D. Buerchler ◽  
B. Elsener ◽  
H. Boehni

ABSTRACTWater content, porosity, pore solution composition, resistivity and dielectric properties of hardened cement paste and mortar samples have been studied as a function of time and relative humidities. A model for the resistivity of cement based materials is presented and an interpretation of the dielectric properties is proposed.


1986 ◽  
Vol 85 ◽  
Author(s):  
M. J. Setzer

ABSTRACTHardened cement paste can be regarded as a highly dispersed system of solid particles, air voids and water filled pores ranging in size from a submicroscopic to a macroscopic scale. Using a statistical model, the elastic moduli of solid particles, air voids and pore water can be combined appropriately to find a correlation between the modulus of hardened cement paste and the moduli, as well as respective volume fractions, of its constituents. Ice formation and the addition of aggregates in a mortar can easily be taken into account. On this basis the measurement of the dynamic elastic modulus of hardened cement paste and mortar at different temperatures and its evaluation provides much interesting data. The interaction of particles and pores is better understood. The ice formation can be studied. Since the freezing temperature of pore water is lowered in small gel pores, the pore size distribution can be calculated. Frost damage is observed directly. Therefore, this method is a valuable tool to improve the Munich model of hardened cement paste.


Sign in / Sign up

Export Citation Format

Share Document