scholarly journals Powder Metallurgy Techniques for Titanium Alloys-A Review

2020 ◽  
Vol 184 ◽  
pp. 01045
Author(s):  
Pradeep Kumar Manne ◽  
Nutenki Shravan Kumar ◽  
Tanya Buddi ◽  
A. Anitha Lakshmi ◽  
Ram Subbiah

Powder metallurgy (PM) is a technique in which materials or components are made from metal powders. In this paper, the overview about titanium alloys and their advantages over engineering applications has been discussed. They are very strong and also possess great mechanical properties and incredible corrosion and wear resistance, and also capable of performing operations at elevated temperatures approximately up to 600ºC. This paper provides various compositions of titanium alloys and various powder metallurgy techniques used for sintering powders of various compositions and their applications. The properties of titanium compounds show the manufacturing of cost effective component. As a result of their fantastic mechanical, physical and organic execution they are finding consistently expanding application in biomedical applications.

2013 ◽  
Vol 551 ◽  
pp. 143-160 ◽  
Author(s):  
Ajit Pal Singh ◽  
Brian Gabbitas ◽  
De Liang Zhang

Powder metallurgy (PM) is potentially capable of producing homogeneous titanium alloys at relative low cost compared to ingot metallurgy (IM). There are many established PM methods for consolidating metal powders to near net shapes with a high degree of freedom in alloy composition and resulting microstructural characteristics. The mechanical properties of titanium and its alloys processed using a powder metallurgical route have been studied in great detail; one major concern is that ductility and toughness of materials produced by a PM route are often lower than those of corresponding IM materials. The aim of this paper is to review the fracture toughness of both PM and IM titanium alloys. The effects of critical factors such as interstitial impurities, microstructural features and heat treatment on fracture toughness are also discussed


2015 ◽  
Vol 1128 ◽  
pp. 105-111 ◽  
Author(s):  
Mădălina Simona Bălţatu ◽  
Petrică Vizureanu ◽  
Mircea Horia Tierean ◽  
Mirabela Georgiana Minciună ◽  
Dragoş Cristian Achiţei

Metallic biomaterials are used in various applications of the most important medical fields (orthopedic, dental and cardiovascular). The main metallic biomaterials are stainless steels, Co-based alloys and Ti-based alloys. Recently, titanium alloys are getting much attention for biomaterials because these types of materials have very good mechanical properties, good corrosion resistance and an excellent biocompatibility. The paper contains important information about titanium alloys used for biomedical applications, which are considered the most widely. It is very important to understand the microstructural evolution and property-microstructure relationship in implant alloys. In the present paper, authors present a short literature review on general aspects of promising biocompatible binary Ti-Mo alloys compared with CoCr and stainless steel alloys, as an alternative of the known metallic biomaterials. This alloys show superior mechanical compatibility and very good biocompatibility. The aim of this review is to highlight the mechanical properties for several types of biomaterials, their application in medical field, especially the Ti-Mo group.


2016 ◽  
Vol 869 ◽  
pp. 935-939 ◽  
Author(s):  
M.R. Seixas ◽  
C. Bortolini Jr. ◽  
R.T. Konatu ◽  
A. Pereira Jr. ◽  
Ana Paula Rosifini Alves Claro

Titanium and its alloys have been used in biomedical applications due to their excellent properties such as high corrosion resistance, biocompatibility and mechanical properties. In orthodontics, initially, it was common to use nickel-titanium alloys, however due to allergic reactions of patients, new titanium alloys containing elements such as niobium and tantalum are being studied. The Ti-25Ta-25Nb alloy is a β-titanium alloy and it has a low elastic modulus. In the present work, the ternary alloy was evaluated after cold work by swaging followed by solubilization treatment. Microstructure and mechanical properties were evaluated after each step of the process. Results were similar to find in the literature for this alloy obtained by other processing rote.


Sign in / Sign up

Export Citation Format

Share Document