scholarly journals Development of Degassing Device for Transformer oil Based on Headspace Degassing Method

2021 ◽  
Vol 252 ◽  
pp. 02010
Author(s):  
Zhibin Yin ◽  
Chao Huo ◽  
Haipeng Sun ◽  
Jing Chen

By analyzing the type and content of gas in oil, the latent faults in equipment can be found as soon as possible, and the faults can be monitored at any time. In this paper, a degassing device based on headspace degassing method is designed. The oil circuit adopts the way of oil pump and battery valve to complete the oil inlet and oil discharge. Through stirring, the dissolved gas in the oil can reach the dynamic balance in the gas-liquid two-phase, so as to realize the rapid and effective separation of the gas in the oil. At the same time, after degassing, the oil can be sent back to the body. In addition, the degassing verification of the device is carried out, and the effect is good. In the next step, the device can be integrated with the gas detection equipment to form a sealed cabinet detection equipment, which is of great significance for the technical realization and engineering application of online monitoring and live detection of power equipment.

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4057 ◽  
Author(s):  
Sergio Bustamante ◽  
Mario Manana ◽  
Alberto Arroyo ◽  
Pablo Castro ◽  
Alberto Laso ◽  
...  

Power transformers are the most important assets of electric power substations. The reliability in the operation of electric power transmission and distribution is due to the correct operation and maintenance of power transformers. The parameters that are most used to assess the health status of power transformers are dissolved gas analysis (DGA), oil quality analysis (OQA) and content of furfuraldehydes (FFA) in oil. The parameter that currently allows for simple online monitoring in an energized transformer is the DGA. Although most of the DGA continues to be done in the laboratory, the trend is online DGA monitoring, since it allows for detection or diagnosis of the faults throughout the life of the power transformers. This study presents a review of the main DGA monitors, single- or multi-gas, their most important specifications, accuracy, repeatability and measurement range, the types of installation, valve or closed loop, and number of analogue inputs and outputs. This review shows the differences between the main existing DGA monitors and aims to help in the selection of the most suitable DGA monitoring approach according to the needs of each case.


1998 ◽  
Vol 275 (3) ◽  
pp. R677-R682 ◽  
Author(s):  
Susan R. Kayar ◽  
Terry L. Miller ◽  
Meyer J. Wolin ◽  
Eugenia O. Aukhert ◽  
Milton J. Axley ◽  
...  

We present a method for reducing the risk of decompression sickness (DCS) in rats exposed to high pressures of H2. Suspensions of the human colonic microbe Methanobrevibacter smithii were introduced via a colonic cannula into the large intestines of the rats. While the rats breathed H2in a hyperbaric chamber, the microbe metabolized some of the H2diffusing into the intestine, converting H2and CO2to methane and water. Rate of release of methane from the rats, which was monitored by gas chromatography, varied with chamber H2pressure. This rate was higher during decompression than during compression, suggesting that during decompression the microbe was metabolizing H2stored in the rats’ tissues. Rats treated with M. smithii had a 25% (5 of 20) incidence of DCS, which was significantly lower ( P < 0.01) than the 56% (28 of 50) incidence of untreated controls, brought on by a standardized compression and decompression sequence. Thus using a microbe in the intestine to remove an estimated 5% of the body burden of H2reduced DCS risk by more than one-half. This method of biochemical decompression may potentially facilitate human diving.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Nitin K. Dhote ◽  
Jagdish B. Helonde

Dissolved gas analysis (DGA) of transformer oil has been one of the most reliable techniques to detect the incipient faults. Many conventional DGA methods have been developed to interpret DGA results obtained from gas chromatography. Although these methods are widely used in the world, they sometimes fail to diagnose, especially when DGA results fall outside conventional methods codes or when more than one fault exist in the transformer. To overcome these limitations, the fuzzy inference system (FIS) is proposed. Two hundred different cases are used to test the accuracy of various DGA methods in interpreting the transformer condition.


2017 ◽  
Vol 14 (06) ◽  
pp. 1750063 ◽  
Author(s):  
A. M. Hegab ◽  
S. A. Gutub ◽  
A. Balabel

This paper presents the development of an accurate and robust numerical modeling of instability of an interface separating two-phase system, such as liquid–gas and/or solid–gas systems. The instability of the interface can be refereed to the buoyancy and capillary effects in liquid–gas system. The governing unsteady Navier–Stokes along with the stress balance and kinematic conditions at the interface are solved separately in each fluid using the finite-volume approach for the liquid–gas system and the Hamilton–Jacobi equation for the solid–gas phase. The developed numerical model represents the surface and the body forces as boundary value conditions on the interface. The adapted approaches enable accurate modeling of fluid flows driven by either body or surface forces. The moving interface is tracked and captured using the level set function that initially defined for both fluids in the computational domain. To asses the developed numerical model and its versatility, a selection of different unsteady test cases including oscillation of a capillary wave, sloshing in a rectangular tank, the broken-dam problem involving different density fluids, simulation of air/water flow, and finally the moving interface between the solid and gas phases of solid rocket propellant combustion were examined. The latter case model allowed for the complete coupling between the gas-phase physics, the condensed-phase physics, and the unsteady nonuniform regression of either liquid or the propellant solid surfaces. The propagation of the unsteady nonplanar regression surface is described, using the Essentially-Non-Oscillatory (ENO) scheme with the aid of the level set strategy. The computational results demonstrate a remarkable capability of the developed numerical model to predict the dynamical characteristics of the liquid–gas and solid–gas flows, which is of great importance in many civilian and military industrial and engineering applications.


2013 ◽  
Vol 203-204 ◽  
pp. 111-114
Author(s):  
Adam Bunsch ◽  
Wiktoria Ratuszek ◽  
Małgorzata Witkowska ◽  
Joanna Kowalska ◽  
Aneta Łukaszek-Sołek

This paper presents the results of the texture investigation in the hexagonal phase and the body-centered cubic  phase of the Ti6Al4V alloy hot-deformed by forging. Forging was performed at two different temperatures on the occurrence of the single  and in the two-phase  +  state. It was found that after deformation both  and  phases are textured and their textures strongly depends on deformation temperature.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012072
Author(s):  
Yanping Li ◽  
Yong Li

Abstract Measuring the content of dissolved gas components in transformer insulating oil by gas chromatography is an important means to judge the internal potential faults of oil filled electrical equipment in the process of operation supervision. The necessary work skills of power grid operators include the ability to detect the content of dissolved gas in transformer oil and judge the operation state of transformer. This paper introduces a preparation method and equipment of transformer standard oil. It can quickly prepare standard oils with various gas component contents. The standard oil quantity value is accurate, the data stability period is greater than 90 days, and the uncertainty is less than 5%. The equipment can be used for training and evaluation of transformer oil gas chromatographic analysis practitioners and calibration of transformer oil on-line gas chromatograph.


2020 ◽  
Vol 21 (3) ◽  
pp. 309
Author(s):  
Maryam Fallah Abbasi ◽  
Hossein Shokouhmand ◽  
Morteza Khayat

Electronic industries have always been trying to improve the efficiency of electronic devices with small dimensions through thermal management of this equipment, thus increasing the use of small thermal sinks. In this study micro heat pipes with triangular and square cross sections have been manufactured and tested. One of the main objectives is to obtain an understanding of micro heat pipes and their role in energy transmission with electrical double layer (EDL). Micro heat pipes are highly efficient heat transfer devices, which use the continuous evaporation/condensation of a suitable working fluid for two-phase heat transport in a closed system. Since the latent heat of vaporization is very large, heat pipes transport heat at small temperature difference, with high rates. Because of variety of advantage features these devices have found a number of applications both in space and terrestrial technologies. The theory of operation micro heat pipes with EDL is described and the micro heat pipe has been studied. The temperature distribution have achieved through five thermocouples installed on the body. Water and different solution mixture of water and ethanol have used to investigate effect of the electric double layer heat transfer. It was noticed that the electric double layer of ionized fluid has caused reduction of heat transfer.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2323 ◽  
Author(s):  
Xiaoling Shen ◽  
Yeju Liu ◽  
Xiaoya Luo ◽  
Zhihong Yang

Pinocembrin is one of the most abundant flavonoids in propolis, and it may also be widely found in a variety of plants. In addition to natural extraction, pinocembrin can be obtained by biosynthesis. Biosynthesis efficiency can be improved by a metabolic engineering strategy and a two-phase pH fermentation strategy. Pinocembrin poses an interest for its remarkable pharmacological activities, such as neuroprotection, anti-oxidation, and anti-inflammation. Studies have shown that pinocembrin works excellently in treating ischemic stroke. Pinocembrin can reduce nerve damage in the ischemic area and reduce mitochondrial dysfunction and the degree of oxidative stress. Given its significant efficacy in cerebral ischemia, pinocembrin has been approved by China Food and Drug Administration (CFDA) as a new treatment drug for ischemic stroke and is currently in progress in phase II clinical trials. Research has shown that pinocembrin can be absorbed rapidly in the body and easily cross the blood–brain barrier. In addition, the absorption/elimination process of pinocembrin occurs rapidly and shows no serious accumulation in the body. Pinocembrin has also been found to play a role in Parkinson’s disease, Alzheimer’s disease, and specific solid tumors, but its mechanisms of action require in-depth studies. In this review, we summarized the latest 10 years of studies on the biosynthesis, pharmacological activities, and pharmacokinetics of pinocembrin, focusing on its effects on certain diseases, aiming to explore its targets, explaining possible mechanisms of action, and finding potential therapeutic applications.


Sign in / Sign up

Export Citation Format

Share Document