scholarly journals Study on Structure Design of Generator of Flood Discharge Tunnel with Level Swirling Flow

2021 ◽  
Vol 276 ◽  
pp. 02013
Author(s):  
Heng Zhou ◽  
Hui Li ◽  
Jing Liu ◽  
Xinlei Guo ◽  
Weiguo Wang ◽  
...  

Through the design of the Generator of the spillway tunnel, the safe operation efficiency of flood discharge tunnel with the level swirling flow is further improved. This paper takes the horizontal swirl spillway tunnel of Gongboxia Hydropower Station on the Yellow River as an example. First, the project hub facilities of the Gongboxia Hydropower Station are introduced. Moreover, the design of the gradient section and the spinning chamber section in the Generator is also studied. Based on the calculation scheme of structural mechanics, the internal force of the structure under various load combinations such as external water pressure and internal water pressure is calculated. According to Design Codes For Hydraulic Concrete Structure, the structural reinforcement is computed. These provide the basis for the design of the flood discharge tunnel with level swirling flow of large hydropower engineering facilities in Northwest China.

2013 ◽  
Vol 51 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Wang ◽  
Hegao Wu ◽  
Yang Li ◽  
Huizhong Gui ◽  
Yong Zhou ◽  
...  

2012 ◽  
Vol 490-495 ◽  
pp. 2902-2905
Author(s):  
Wen Xin Zheng

According to the original scheme, the surface spillway tunnel of the Jilintai-I hydropower station flood discharge system was designed to be arranged separately, but not to be combined with diversion tunnel; the radial gate of the lower level spillway tunnel was designed not to have the vertical drop and lateral sudden enlargement, and the discharge structures at oblique tunnel were designed to be cancelled. In this paper, through the test on the hydraulic model, the analysis on the test results and many advisory demonstrations, multiple modifications and optimizations are made for the shape design of the axis, bottom slope and local structure of bottom slope and local structure, and also an analysis is conducted on the test results of the main shape scheme of surface spillway tunnel, and then the related opinions and suggestions are proposed according to the existing problems. The way of the pressured vertical drop and lateral sudden enlargement was ultimately used in lower level spillway tunnel of the hydropower station flood discharge system. Also, in this paper, the author makes a hydraulic test on the main shape design of lower level spillway tunnel based on the original scheme, and then an analysis is conducted on the test results and a final scheme is proposed according to the actual problems.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 548
Author(s):  
Jinhu Yang ◽  
Qiang Zhang ◽  
Guoyang Lu ◽  
Xiaoyun Liu ◽  
Youheng Wang ◽  
...  

During the second half of the 20th century, eastern Northwest China experienced a warming and drying climate change. To determine whether this trend has continued or changed during the present century, this study systematically analyzes the characteristics of warming and dry–wet changes in eastern Northwest China based on the latest observational data and World Climate Research Programme (WCRP) Coupled Model Intercomparison Project Phase 6 (CMIP6) collection data. The results show that eastern Northwest China has warmed continuously during the past 60 years with a sudden temperature change occurring in the late 1990s. However, the temperature in the 2000s decreased slowly, and that in the 2010s showed a warming trend. The amount of precipitation began to increase in the late 1990s, which indicates a contemporary climate transition from warm-dry to warm-wet in eastern Northwest China. The contribution of precipitation to humidity is significantly more than that of temperature. Long-term and interannual variations dominate the temperature change, with the contribution of the former much stronger than that of the latter. However, interannual variation dominates the precipitation change. The warming accelerates from period to period, and the temperature spatial consistently increased during the three most recent climatic periods. The precipitation decreased from 1961–1990 to 1981–2010, whereas its spatial consistency increased from 1981–2010 to 1991–2019. The significant warming and humidification which began in the late 1990s and is expected to continue until the end of the 21st century in the medium emission scenario. However, the current sub-humid climate will not easily be changed. The warming could cause a climate transition from warm temperate to subtropical by 2040. The dry-to-wet climate transition in eastern Northwest China could be related to a synergistic enhancement of the East Asian summer monsoon and the westerly circulation. This research provides a scientific decision-making basis for implementing western development strategies, ecological protection, and high-quality development of the Yellow River Basin Area as well as that for ecological construction planning and water resource management of eastern Northwest China.


2014 ◽  
Vol 18 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Peiyue Li ◽  
Jianhua Wu ◽  
Hui Qian

<p class="MsoNormal" style="line-height: 200%;">Statistical analyses, a Piper diagram, the saturation index and the correlations of chemical parameters were used to reveal the hydrogeochemistry and hydrogeochemical evolution of shallow groundwater in the southern part of the Zhongwei section of the Yellow River alluvial plain. The water quality for agricultural and domestic uses was also assessed in the study. The results suggest that the shallow groundwater in the study area is fresh to moderately mineralized water. Higher Ca<sup>2+</sup> and HCO<sub>3</sub><sup>-</sup> are observed in the less mineralized water, whereas Na<sup>+</sup> and SO<sub>4</sub><sup>2-</sup> are common ions in the highly mineralized water. The major hydrochemical facies for groundwater with total dissolved solids (TDS) &lt;1 g/L are HCO<sub>3</sub>-Ca·Mg and HCO<sub>3</sub>-Ca·Na·Mg, and for groundwater with TDS &gt; 1 g/L, SO<sub>4</sub>·Cl-Na and SO<sub>4</sub>·Cl-Na·Mg·Ca are the predominant hydrochemical types. The main reactions in the groundwater system are the dissolution/precipitation of gypsum, fluorite, halite, calcite and dolomite. Cation exchange is also important in controlling the groundwater chemistry. The water samples assessed in the paper are of acceptable quality for agricultural use, but most of them are not fit for direct human consumption (drinking). TDS, total hardness (TH), Cl<sup>-</sup> and SO<sub>4</sub><sup>2-</sup> are the main indices that result in the poor drinking water quality.</p><p class="MsoNormal" style="line-height: 200%;"> </p><p class="MsoNormal" style="line-height: 200%;"><strong>Resumen</strong></p><p>Análisis estadísticos, un diagrama de Piper, el índice de saturación y la correlación de los parámetros químicos fueron utilizados para revelar la hidrogeoquímica y la evolución hidrogeoquímica de las aguas subterráneas poco profundas en la parte sur de la sección Zhongwei en la planicie aluvial del río Amarillo. La calidad del agua para el uso doméstico y agrícola también fue evaluada en este estudio. Los resultados sugieren que las aguas subterráneas poco profundas en el área de estudio son entre frescas y moderadamente mineralizadas. Un índice mayor de Ca2+ y HCO3- se observó en las aguas menos mineralizadas, mientras que Na+ y SO42- son iones comunes en las aguas altamente mineralizadas. Los perfiles hidroquímicos predominantes para las aguas subterráneas con Total de Sólidos Disueltos (TDS) &lt;1 g/L son HCO3-Ca·Mg y HCO3-Ca·Na·Mg, y para las aguas subterráneas con TDS &gt;1 g/L, SO4·Cl-Na y SO4·Cl-Na·Mg·Ca. Las mayores reacciones en el sistema de aguas subterráneas son la disolución/ precipitación de yeso, fluorita, halita, calcita y dolomita. El intercambio de cationes también es importante en el control de la química de las aguas subterráneas. Las muestras de agua evaluadas en este manuscrito son de calidad aceptable para el uso agrícola, pero la mayoría no son aptas para el consumo humano. El índice TDS, la dureza total del agua (TH), Cl- y SO42- son las razones principales que influyen en la baja calidad de esta agua.</p>


2021 ◽  
Vol 31 (4) ◽  
pp. 227-235
Author(s):  
Liang Wei

Different from traditional waterproof methods for road and bridge concrete, the spray-coating waterproof material can effectively prevent rainwater and other corrosive liquids from entering the concrete structure, and it has a few functional advantages such as anti-carbonization, resistance to sulfate attack, and high elongation. Existing studies have discussed the impact of the microstructure of waterproof material on the structure of waterproof coating, the optimization of the mix ratios of waterproof material, and the influencing factors of the waterproof performance of waterproof material, etc., however, few researches have concerned about the mechanical properties of concrete after coated with the spray-coating waterproof material. Therefore, to fill in this research gap, this paper researched the durability of road and bridge concrete and the spray-coating waterproof material. At first, it analyzed the bridge deck water pressure and the internal force of the drain pipe structure under multiple drainage methods, and calculated the water pressure at the gutter inlet, the stress, and the permeability coefficient of the waterproof coating. Then, this paper elaborated on the experimental methods for measuring the durability of the road and bridge before and after coated with the spray-coating waterproof material, and introduced the methods for testing the waterproof material and the concrete. At last, this paper gave the corresponding experimental results, the analysis, and the conclusion.


2018 ◽  
Vol 54 (2) ◽  
pp. 104-114
Author(s):  
Xiuyan Jing ◽  
Hongbin Yang ◽  
Na Wang

Abstract The chemical evolution of groundwater has received close attention from hydro-geologists. Northwest China largely consists of arid and semi-arid regions, where surface water and groundwater frequently exchange with each other, and where the mixing and water–rock interactions significantly affect the direction of water quality evolution. Based on experimental simulation, this paper investigates the interactions among the Yellow River water, groundwater and rocks in Yinchuan. The study found that when groundwater is mixed with the Yellow River water, the Yellow River water has a certain dilution effect on the hydro-chemical composition of groundwater; however, this effect is not simply diluted by proportion for no reaction between irons, but a portion of calcium, sulfur, and carbonate form precipitates. After mixing of the Yellow River water, groundwater and rocks, the pH increased, and the carbon dioxide system reached equilibrium again. In addition, CO32− was produced. While Na+ increase was mainly due to dissolution, SO42− decrease was because of precipitation. The precipitation or dissolution of Ca2+, Mg2+, and CO32− mainly depended on the mixing ratio between groundwater and river water, which suggested the reversible behavior of the dissolution-precipitation of carbonate minerals.


Sign in / Sign up

Export Citation Format

Share Document