scholarly journals Experimental development process of similar material of water resisting layer in physical model test

2021 ◽  
Vol 303 ◽  
pp. 01012
Author(s):  
Qi Liu ◽  
Shaojie Chen ◽  
Shuai Wang ◽  
Jing Chai ◽  
Dingding Zhang ◽  
...  

The stability evaluation of water resisting layer in the process of coal mining is the key to study the law of water and soil loss and prevent the loss of water resources. The development and proportioning of similar materials are the basis to study the stability of water resisting layer by physical simulation. A new type of similar material considering water characteristics was developed through orthogonal experiments. The similar material was composed of river sand, bentonite, silicone oil, vaseline, and water. Determine the best test development process. First of all, the proportion test scheme is designed based on the orthogonal test. Then, the influence of cement concentration, mass ratio of silicone oil to vaseline and other components on the density, uniaxial compressive strength, elastic model and Poisson’s ratio of similar materials was analyzed by range analysis. Finally, the multiple linear regression equation between the parameters and the composition of similar materials for water resisting layer is obtained, and the optimal composition ratio is further determined according to the relationship between the test influencing factors and the mechanical properties of similar materials. The results show that the selected raw materials and their proportioning method are feasible. The content of river sand plays a major role in controlling the density and Poisson’s ratio of similar materials. The mass ratio of aggregate to binder is the main factor affecting the uniaxial compressive strength and elastic modulus of similar materials, while the cementing concentration has the second largest influence on the density, uniaxial compressive strength, elastic modulus and Poisson’s ratio of similar materials. Determining the cementing concentration that matches the design of similar material model tests is critical to improving test accuracy and provides a reference for the preparation of similar materials for water resisting layer under different requirements during the development of similar materials.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Qi Liu ◽  
Shaojie Chen ◽  
Shuai Wang ◽  
Jing Chai ◽  
Dingding Zhang

A new type of similar material considering water characteristics is developed through orthogonal experiments. The similar material is composed of river sand, barite powder, cement, gypsum, and water. We determine the best test development process. First, the proportion test scheme is designed based on the orthogonal test. Then, the effects of the moisture content, mass ratio of aggregate to binder and other components on the density, uniaxial compressive strength, elastic model, and Poisson’s ratio of similar materials are analyzed by range analysis. Finally, the multiple linear regression equation between the parameters and the composition of similar materials is obtained, and the optimal composition ratio is determined according to the relationship between the test’s influencing factors and the mechanical properties of similar materials. The results show that the selected raw materials and their proportioning method are feasible. The content of barite powder plays a major role in controlling the density and Poisson’s ratio of similar materials. The mass ratio of aggregate to binder is the main factor that affects the uniaxial compressive strength and elastic modulus of similar materials, while the moisture content has the second largest effect on the density, uniaxial compressive strength, elastic modulus, and Poisson’s ratio of similar materials. When the residual moisture content increased from 0 to 4%, the uniaxial compressive strength and elastic modulus of similar materials decrease by 49.5% and 53.3%, respectively, and Poisson’s ratio increases by 54.8%. Determining the residual moisture content that matches the design of similar material model tests is critical to improving the test accuracy and provides a reference to prepare similar materials with different requirements.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Caoxuan Wen ◽  
Shanpo Jia ◽  
Xiaofei Fu ◽  
Lingdong Meng ◽  
Zhenyun Zhao

Due to the strong hydration sensitivity of mudstone, drilling of deep mudstone is difficult and pricy, which results in the study on its physical and mechanical properties inseparable from similar material tests. On these bases, triaxial compression and Brazilian tensile tests of the original mudstone drilled from the caprock of the D5 aquifer structure are carried out. Then, orthogonal experiments of mudstone similar materials with river sand and barite powder as aggregate and cement and gypsum as the binder are conducted, which include 3 factors that, respectively, are mass ratio of aggregate to binder, mass ratio of cement to gypsum, and barite powder content, and each factor contains 5 levels, totalling 25 groups of 150 samples. By comparing the results of mudstone and artificial samples made of similar materials, it is obvious that artificial samples and mudstone are significantly similar in terms of density, compressive strength, elastic modulus, and compressive strength when the aggregate-binder ratio is about 4, 8, 5, and 4, respectively. Further sensitivity analysis showed that the aggregate-binder ratio played a major role in controlling the properties of artificial samples, while the sensitivity of different parameters to the cement-gypsum ratio and barite content was different. The results indicate that the selected raw materials and their proportion are feasible, which can meet similar requirements and can be a reference for similar material experimental research of target mudstone.


2018 ◽  
Vol 10 (1) ◽  
pp. 289-296 ◽  
Author(s):  
Ligang Zhang ◽  
Xiao Fei Fu ◽  
G. R. Liu ◽  
Shi Bin Li ◽  
Wei Li ◽  
...  

AbstractIn this work, the intensive theoretical study and laboratory tests are conducted to evaluate the craters morphology via the flat-ended indenter test, relationship of indentation hardness (HRI) and uniaxial compressive strength (UCS). Based on the stress distribution, failure process and Mohr–Coulomb failure criterion, the mathematical mechanical models are presented to express the formation conditions of “pulverized zone” and “volume break”. Moreover, a set of equations relating the depth and apex angle of craters, the ratio of indentation hardness and uniaxial compressive strength, the angle of internal friction and Poisson’s ratio are obtained. The depth, apex angle of craters and ratio of indentation hardness and uniaxial compressive strength are all affected by the angle of internal friction and Poisson’s ratio. The proposed models are also verified by experiments of rock samples which are cored from Da Qing oilfield, the percentage error between the test and calculated results for depth, apex angle of craters and the ratio of HRI and UCS are mainly in the range of –1.41%–8.92%, –5.91%–3.94% and –8.22%–13.22% respectively for siltstone, volcanic tuff, volcanic breccia, shale, sand stone and glutenite except mudstone, which demonstrates that our proposed models are robust and effective for brittle rock.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mingxing Gao ◽  
Yongli Liu

Water injection in coal seams will lead to the increase of moisture content in coal, which plays an essential role in the physical and mechanical properties of coal. In order to study the influence of moisture content on the mechanical properties of soft media, the forming pressure (20 MPa) and particle size ratio (0-1 mm (50%), 1-2 mm (25%), and 2-3 mm (25%)) during briquette preparation were firstly determined in this paper. Briquettes with different moisture contents (3%, 6%, 9%, 12%, and 15%) were prepared by using self-developed briquettes. Uniaxial and triaxial compression tests were carried out using the RMT-150C rock mechanics test system. The results show that the uniaxial compressive strength and elastic modulus of briquette samples increase first and then decrease with the increase of briquette water, while Poisson’s ratio decreases first and then increases with the increase of briquette water. When the moisture content is around 9%, the maximum uniaxial compressive strength is 0.866 MPa, the maximum elastic modulus is 1.385 GPa, and Poisson’s ratio is at the minimum of 0.259. The compressive strength of briquettes increases with the increase of confining pressure. With the increase of moisture content, the cohesion and internal friction angle of briquettes first increased and then decreased.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Han Meng ◽  
Yuzhong Yang ◽  
Liyun Wu ◽  
Fei Wang ◽  
Lei Peng

Briquette coals with different cement contents are frequently used to study the coal body’s properties. In this study, the deformation and strength of briquette coal samples with 0, 5, 10, and 20% cement contents were experimentally and theoretically investigated using the acoustic emission (AE) characteristics monitored during the uniaxial compression tests. The results show that the uniaxial compression process of raw coal and briquette coal samples can be subdivided into compaction, elastic, plastic (yield), and brittle failure stages. With an increase in cement content, briquette coal samples undergo the elastic and plastic stages, and their postpeak stress drop rate gradually grows, and their plastic deformation is followed by brittle failure. The uniaxial compressive strength and elastic modulus of briquette coal samples show a linearly increasing relationship with cement content, while their Poisson’s ratio decreases gradually. During the uniaxial compression, raw coal and briquette coal samples produce the AE signals. The overall AE signal of briquette coal samples is relatively low, and there are no obvious AE events in raw coal samples. The uniaxial compressive strength, elastic modulus, and Poisson’s ratio of briquette coal samples with a 20% cement content and their AE signal cumulative amplitude, count, and energy values are very close to the corresponding parameters of raw coal samples. Therefore, they can be used for simulating raw coal samples in laboratory tests.


2021 ◽  
Vol 11 (6) ◽  
pp. 2641
Author(s):  
Kun Du ◽  
Yu Sun ◽  
Songge Yang ◽  
Shizhan Lv ◽  
Shaofeng Wang

Rockbursts represent hazardous dynamic disasters for underground coal mines and other underground rock engineering projects. Some bursting liability indices are put forward and applied to identify the likelihood of rock burst occurrence. The classification criteria of the bursting liability indices are proved to be reasonable for coals, but they are still immature for non-coal rocks. Thus, it is uncertain that it is reasonable to use the classification criteria of coal for evaluating the bursting liability of non-coal rocks. Hence, in this study, a large amount of data, such as the basic mechanical parameters, i.e., Poisson’s ratio μ, elastic modulus E, uniaxial compressive strength σc, and uniaxial tensile strength σt, and the bursting liability indices, i.e., elastic strain energy index WET, bursting energy index Wcf, dynamic fracture duration time DT, and brittleness index B, of different coals and non-coal rocks were collected in China. Then, the differences of mechanical parameters and rockburst tendency indices between coal and non-coal rocks were studied systematically, and apart from the Poisson’s ratio μ, the other three basic mechanical parameters of coal and non-coal rocks have great differences in data distribution and concentration scope, which proved that the non-coal rocks cannot share the same index system and classification criteria of coals. In addition, the evaluation results of a single index for rock bursting liability of rocks were directly compared in pairs, and the inconsistency rate for coals is about 42–68%. It is necessary to build a comprehensive evaluation method to evaluate the bursting liability of rocks. At last, the modified rockburst tendency classification criteria for non-coal rocks were put forward. It is reasonable to use the classification criteria of the WET and Wcf to classify the bursting liability of non-coal rocks, while it is unreasonable to use that of the DT and σc. It has been concluded that the index B are more suitable for non-coal rocks, and a new index, named strength decrease rate (SDR), was proposed to determine the bursting liability, which is the ratio of uniaxial compressive strength σc to duration of dynamic fracture DT.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xianggang Zhang ◽  
Dapeng Deng ◽  
Jianhui Yang

This is a study of the basic mechanical properties of specified density shale aggregate concrete, which is based on different replacement rates in stone-lightweight aggregate concrete (stone-LAC) and sand-lightweight aggregate concrete (sand-LAC). They were prepared by replacing the ceramsite and pottery sand with stone and river sand, respectively. Many tests were performed regarding the basic mechanical property indexes, including tests of cube compressive strength, axial compressive strength, splitting tensile strength, flexural strength, elastic modulus and Poisson’s ratio. The failure modes of specified density shale aggregate concrete were obtained. The effects of replacement rates on the mechanical property indexes of specified density shale aggregate concrete were analyzed. Calculation models were implemented for elastic modulus, for the conversion relations between the axial compressive strength and the cube compressive strength, and for the relations between the tension-compression ratio and Poisson’s ratio. It was shown that when the replacement rate of stone or river sand increased from 0% to 100%, the cube compressive strength of stone-LAC and sand-LAC increased, respectively, by 55% and 25%, the axial compressive strength increased, respectively, by 91% and 72%, splitting tensile strength increased, respectively, by 99% and 44%, and the flexural strength increased, respectively, by 46% and 26%. Similarly, the elastic modulus of stone-LAC and sand-LAC increased, respectively, by 16% and 30%. However, Poisson’s ratio for stone-LAC decreased first and then increased, eventually increased by 11%; Poisson’s ratio for sand-LAC only reduced gradually, eventually reduced by 67%. After introducing the influence parameter for the replacement rate, the established calculation models become simple and practical, and the calculation accuracies are favorable.


2020 ◽  
Vol 10 (9) ◽  
pp. 3221 ◽  
Author(s):  
Hao Wu ◽  
Bing Dai ◽  
Guoyan Zhao ◽  
Ying Chen ◽  
Yakun Tian

As a powerful numerical analysis tool, PFC (Particle Flow Code) is widely applied to investigate the mechanical behavior of rock specimen or rock engineering under different stress states. To match the macroscopic properties of the PFC model with those of the rock, a set of micro-scale parameters of the model needs to be calibrated. Thus, this paper proposed an optimization method combining Box–Behnken experimental design and desirability function approach to quickly and accurately find the values of the micro-scale parameters. The sensitivity of the main micro-scale parameters (mean value of parallel-bond normal strength σc, ratio of particle normal to shear stiffness Ec, and Young’s modulus at each particle–particle contact kn/ks) and their interactions to the macroscopic responses (uniaxial compressive strength, Young’s modulus, and Poisson’s ratio) were thoroughly analyzed using response surface theory. After that, validation study was conducted on the calibrated model. The results manifest that the uniaxial compressive strength is extremely significantly affected by σc and kn/ks, the Young’s modulus is highly correlated with Ec and kn/ks, and the Poisson’s ratio is most significantly influenced by kn/ks. Additionally, the interaction of micro-scale parameters also has different impact upon the responses. Moreover, the simulated crack behavior around differently shaped openings in rock samples under uniaxial compression is found to be well agreeable with the experimental results, which verifies the reliability of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document