scholarly journals Previous Research Works on Reinforced Concrete Curved Beams

2021 ◽  
Vol 318 ◽  
pp. 03011
Author(s):  
W. H. Khaleel ◽  
A. A. Talal ◽  
N. H. Baidaa ◽  
K. S. Abdul-Razzaq ◽  
A. A. Dawood

The current research work summarizes some previous research works on horizontally curved beams. Because of curvature, torsional effects in the analysis and design should be included. Diameter of ring beam, number of supports, beam width, compressive strength of the concrete, and bearing plate width. Which can be summarized from previous studies is that increasing diameter of ring by about 25-75% decreases the capacity load by about 14-36%, while increasing number of supports by about 33-100%, beam width by about 25-75%, compressive strength of concrete by about 24-76%, and bearing plate width by about 25-75% increases the capacity load by about 62-189%, 25-75%, 24-76%, and 5-16%, respectively due to the beam section increase and/or its properties. Frequently, reinforced concrete deep ring beams exhibit shear failure in a manner similar to straight beams. Strut and tie model (STM) and plastic analysis are useful tools for efficiently analyzing ring or curved deep beams. In addition, the nonlinear three-dimensional finite element modeling is typical for predicting the deep curved beams strength and behavior.

2015 ◽  
Vol 744-746 ◽  
pp. 244-247
Author(s):  
Xi Chen

Environmentally sustainable building construction has experienced significant growth during the past 10 years. The public is becoming more aware of the benefits of green construction,and green building is leading to changes in the way of owners, designers, contractors, and approach of the design, construction. A new type of frame consisting of steel beam and reinforced concrete column (RCS) installing efficient and light heat insulation wall has been presented in composite frame. The composite frame fully develops the merits of steel and concrete, and thus is reasonable and economical from both structural and construction viewpoints. The chief aim of the present work is to establish the design procedures for RCS joints based on the existing standards in china. The research has recorded valuable experimental data using the method of the nonlinear three-dimensional ANSYS finite element.The research work introduces an amended design formula,which takes account the effect of ratio of axial compression stress to strength. Some effective design suggestions are given as a reference to the structural engineer.


2010 ◽  
Vol 5 (4) ◽  
pp. 426-436 ◽  
Author(s):  
Arja Saarenheimo ◽  
◽  
Kim Calonius ◽  
Markku Tuomala ◽  
Ilkka Hakola ◽  
...  

In developing numerical approaches for predicting the response of reinforced concrete structures impacted on by deformable projectiles, we predict structural behavior collapse and damage using simple analysis and extensive nonlinear finite element (FE)models. To verify their accuracy, we compared numerical results to experimental data and observations on impact-loaded concrete walls with bending and transverse shear reinforcement. Different models prove adequate for different cases and are sensitive to different variables, making it important to rely on more than a single model alone. For wall deformation in bending mode, deflection is predicted reasonably well by simple four-node shell elements. Where punching dominates, transverse shear behavior must be considered. Formation of a shear failure cone is modeled using three-dimensional solid elements.


2019 ◽  
pp. 205-214
Author(s):  
Ikumapayi C. M. ◽  
Adeniji A. A. ◽  
Obisesan A. A. ◽  
Odeyemi O. ◽  
Ajayi J. A.

Concrete is one of the reliable, durable, economical and acceptable construction materials among the building and construction stakeholders worldwide. Performance of concrete could be threatened especially reinforced concrete by some processes such as corrosion, sulfate attack among others. Corrosion of reinforcement in reinforced concrete can be induced by carbonation process. Even though carbonation initiates corrosion, it has been gathered that carbonation could still be of immense benefits to building and construction industries if its mechanism of operation is understudied. This research work has therefore investigated the effect of carbonation on some selected mechanical properties of concrete such as compressive strength, flexural strength, water absorption and weight changes. Concrete cubes and beams of M15 grade with 0.5 % water-cement ratio were prepared and subjected to accelerated carbonation. Their compressive strength, flexural strength, water absorption and weight changes were determined in accordance with the relevant standards. The outcomes show that carbonation improves all the mechanical properties investigated. The use of carbonation can be positively explored in reinforced concrete provided there is adequate nominal cover.


Author(s):  
R Ashutosh V Kulkarni ◽  
◽  
Dr Aravindkumar B Harwalkar ◽  

In this paper Analysis and Design of different Structural elements of the football stadium are presented, with particular emphasis on the Combination of Steel Truss without and with Shell roof cover and its interȧction with the underlying reinforced concrete structures. The Football stadium considered for the study is of rectangular plan, with 85 m width and 140 m length and height of 19.5 m. The plan of Football Stadium is generated in AutoCAD 2016 software. The Stadium structure is composed of special moment – resisting framed. Wind velocity is taken as 39 mph and Seismic zone IV in this study. The proposed stadium is analysed using Equivȧlent static and dynamic ȧpproach by Reṣponse ṣpectrum ȧnd Time Hiṣtory ȧnȧlysis. In anȧlysing the ṣtructure, 21 load combinations are used. The grandstand ṣtructure is made of reinforced concrete and the roof is of ṣtructural steel using Pipe and Tube sections. Deȧd loȧdṣ, live loȧdṣ, wind ȧnd ṣeismic loȧdingṣ data are considered bȧsed on IS-875 (PART 1-3) 1987 ȧnd IS:1893 (Part 1):2016. IS456:2000 and SP16:1987 code is used for Design of R.C.C components such as Beȧm, Column, Seating Platform, Footing and IS 800:2007 code is used for Design of End Beȧring Plate connection with Truss member. Analysiṣ of truss and other elements is carried out with software program of Staad. Pro V8i SS6 and also the designs are carried out as per provisions of relevant Indian standards. On introduction of Shell-like roof for Open Stadium which is used not only to protect the Game from Glare of Sunshine and Rain but also appears unique and attractive. From the obtained results it is observed that the displacement due to Wind action in both X and Z direction reduces significantly by the introduction of Shell roof. Also, due to RSA and THA there is reduction in the displacement on introduction of Shell-like roof to an Open Stadium.


2021 ◽  
Author(s):  
Mark Hobbs ◽  
Gabriel Hattorri ◽  
John Orr

The assumptions made in design codes can result in unconservative predictions of shear strength for reinforced concrete members. The limitations of empirical methods have prompted the development and use of numerical techniques. A three-dimensional bond-based peridynamic framework is developed for predicting shear failure in reinforced concrete members. The predictive accuracy and generality of the framework is assessed against existing experimental results. Nine reinforced concrete beams that exhibit a wide range of failure modes are modelled. The shear-span-to-depth ratio is systematically varied from 1 to 8 to facilitate a study of different load-transfer mechanisms and failure modes. A comprehensive validation study such as this has until now been missing in the peridynamic literature. A bilinear constitutive law is employed, and the sensitivity of the model is tested using two levels of mesh refinement. The predictive error between the experimental and numerical failure loads ranges from +3% to -57%, highlighting the importance of validation against a series of problems. The results demonstrate that the model captures many of the factors that contribute to shear and bending resistance. New insights into the capabilities and deficiencies of the peridynamic model are gained by comparing the expected load-transfer mechanisms with the predictive error.


2021 ◽  
Vol 14 (1) ◽  
pp. 130-147
Author(s):  
Khattab Saleem Abdul-Razzaq ◽  
Abdullah A. Talal ◽  
Wisam H. Khaleel ◽  
Yahyia M. Hameed

This paper represents a parametric study utilizing finite element analysis for twenty-five reinforced concrete semi-circular deep beams. The parameters that were taken into consideration in the current work are radius, height, width, concrete compressive strength and number of supports. It is found that decreasing radius of beam by 16-66% leads to decrease the midspan positive moment, support negative moment, torsional moment and midspan deflection by about 0.3-20%, 2.4-25%, 2-24% and 29-85%, respectively, while the load capacity increases by about 23-158%. The midspan positive moment, support negative moment, torsional moment and load capacity increase by about 20-682%, 20-81%, 20-81% and 21-84%, respectively, whereas midspan deflection decreases by 7-17% when the beam height increases by about 16-66%. The positive moment, negative moment, torsional moment and load capacity increases by about 43-197%, 40-185%, 29-187% and 46-214%, respectively, whereas deflection decreases by about 1.4-3.3% when the beam width increases by about 16-66%. The positive moment, negative moment, torsional moment and load capacity increases by about 10-84%, 9-77%, 9-79% and 11-92%, respectively, whereas deflection decreases by about 0.1-0.5% when the compressive strength increases by 20-220%. Finally, it is found that the positive moment increases by about 36-47% when number of supports increased by 33-66%, while the negative moment increases by about 16-31% when number of supports decreases by 14-29%, whereas the torsional moments and deflection decreases by about 6-55% and 37-84%, respectively when number of supports increases by 33-133%, while load capacity increases by 156-969% when number of support increases by 33-133%.


Author(s):  
Kazuhiro Kitayama ◽  
Hiromu Katae

The seismic performance of a corner beam-column joint in reinforced concrete frames was studied by testing two three-dimensional corner beam-column subassemblage specimens without slabs under constant column axial load and bi-directional lateral cyclic load reversals. The column-to-beam flexural strength ratio was varied from 1.4 to 2.3 by changing the magnitude of column axial load. Although a sufficient margin to prevent shear failure was provided to a corner beam-column joint in the test, the subassemblage specimens failed in joint hinging after beam and column longitudinal bars and joint hoops yielded. The ultimate joint hinging capacity of a corner joint under bi-directional lateral loading was enhanced by an increase in column compressive axial load, and can be estimated based on the new mechanism proposed by Kusuhara and Shiohara.


2012 ◽  
Vol 166-169 ◽  
pp. 1316-1320
Author(s):  
Ying Wei Yun ◽  
Qin Luo ◽  
Il Young Jang ◽  
Shan Shan Sun ◽  
Jia Wei Zhang

Ductility is important in the design of reinforced concrete structures. In seismic design of reinforced concrete members, it is necessary to allow for relatively large ductility so that the seismic energy is absorbed to avoid shear failure or significant degradation of strength even after yielding of reinforcing steels in the concrete member occurs. This paper aims to present the basic data for the ductility evaluation of reinforced HPC (high performance concrete) beams. Accordingly, 10 flexural tests were conducted on full-scale structural concrete beam specimens having concrete compressive strength of 40, 60, and 70 MPa. The test results were then reviewed in terms of flexural capacity and ductility. The effect of concrete compressive strength, tension steel ratio, and shear span to beam depth ratio on ductility were investigated experimentally.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Sign in / Sign up

Export Citation Format

Share Document