scholarly journals Utilization of Pine Fruit and Peanut Shell Wastes into Briquettes as an Alternative Fuel

2021 ◽  
Vol 328 ◽  
pp. 09002
Author(s):  
Mohamad Mirwa ◽  
Muhammad Abdus Salam Jawwad

Fuel or energy sources scarcity is currently a problem in Indonesia. Pine waste and peanut shells are wastes that have potential to be processed into alternative energy as briquettes, using molasses as adhesive. Briquette was made by destroying the material into small pieces that have been carbonized and sieved with a variation of 20 and 30 mesh size, added with molasses, and then molded with a hydraulic press. Briquettes are dried using an oven at 105 °C for 10 hours to remove moisture content. The pine to peanut shell ratio used are of 0:1, 1:0, 1:1, 1:2, 1:3, 2:1, 2:3, 3:1 and 3:2. The analysis includes analysis of calorific value, moisture content, ash content and compressive strength. The result shows the pine waste to peanut shells ratio of 1:0 has the highest calorific value for 20 mesh is 4674.50 Cal/g and for 30 mesh is 4585.10 Cal/g. The lowest water content for 20 mesh is 1.76% and for 30 mesh is 1.85%. The lowest ash content for 20 mesh is 0.58% and for 30 mesh is 0.59%. And the highest compressive strength for 20 mesh is 35.20 kg/cm2 and for 30 mesh is 28.90 kg/cm2.

REAKTOR ◽  
2019 ◽  
Vol 18 (04) ◽  
pp. 183 ◽  
Author(s):  
Santiyo Wibowo ◽  
Ningseh Lestari

Peanut shells could be regarded as biomass wastes generated from agricultural products, which are abundantly available.  The current handling of those wastes is merely through direct incineration, without a proper and controlled manner. Consequently, it could arouse environmental concerns, such as air pollution and human respiratory diseases.  One alternative solution is converting those peanut shells to bio-pellet, expectedly applicable for fuels.  Relevantly, research on bio-pellet manufacture from peanut shells, previously treated with the torrefaction, was conducted. It’s aimed mainly to identify the fuel-related characteristics of bio-pellet products.  The tested bio-pellet parameters covered, moisture content, ash content, volatile matters, fixed carbon content, calorific values, and density.  The results revealed that torrefaction temperature and time at raw materials (peanut shells) could improve their qualities in regard to particular calorific value compared to those before such torrefaction; which referred to Indonesia’s Standard (SNI-8021-2014) for wood bio-pellet.  Further, torrefaction could increase bio-pellet quality which satisfied the SNI’s Standard, except for ash content.  Optimal torrefaction treatment was obtained at 300oC temperature for 60 minutes, whereby it achieved remarkable bio-pellet characteristics in terms of moisture content (3.092%), ash content (6.116%), volatile matters (38.387%), fixed carbon (55.447%), calorific value (6174 cal/g), and density (0.703 g/cm3). The torrefaction bio-pellets from peanut shells could achieve remarkable performances, with respect to fuel consumption rate (0.68 kg/hr), heating value (6174 kcal/kg), and thermal efficiency (16.67%).


2020 ◽  
Vol 2 (1) ◽  
pp. 1-6
Author(s):  
Giyanto Giyanto

Briquettes are solid fuels that can be used as alternative energy. This research aims to determine the optimal ratio of raw materials with adhesive content at about 10% constantly. The stages of this research were as follows: 1) Sampling of raw materials, 2) Drying and decomposition of raw materials, 3) Carbonization Process, 4) Milling. 5) Composition Treatment, 6) Pressing and quality analysis of briquettes. The data of this research were obtained by measuring calorific value, moisture content, ash content, density, compressive strength and combustion rate. The ratio between empty bunch : bagasse respectively was depended on 100%: 0%, 75%: 25%, 50%: 50%, 25%: 75%, 0%: 100%. The Parameters of treatments were calorific value, moisture content, ash content, density, compressive strength, and combusition rate to find out the best parameters. The result of this research show that the combination of empty bunch and baggase gave the effect to the qualities. The highest calorific value was showed in the ratio empty bunch : baggase (100% : 0%) with average HHV value; the lowest average of moisture content ; the lowest ash content; density; compressive strength value; and combustion rate respectively 5889 cal/gr; 2,81%; 20%; 0,941 gr/ml; 1,82N/cm2; 0,00223gr/second.


2016 ◽  
Vol 78 (9-2) ◽  
Author(s):  
Hasan Mohd Faizal ◽  
M. Shafiq M. Nazri ◽  
Md. Mizanur Rahman ◽  
S. Syahrullail ◽  
Z. A. Latiff

High global energy demand scenario has driven towards transformation from sole dependence on fossil fuels to utilization of inexhaustible renewable energy sources such as hydro, biomass, solar and wind. Renewable energy sources are abundant in Malaysia, especially palm biomass residues that are produced during the oil extraction process of fresh fruit bunch. Therefore, it is inevitable to harness these bioenergy sources, in order to prevent waste accumulation at adjacent to palm mills. Briquetting of palm biomass such as empty fruit bunch (EFB) with polyethylene (PE) plastics waste addition is expected not only could maximize the utilization of energy resources, but also could become as a potential solution for residue and municipal plastics waste disposal. In the present study, the physical and combustion properties of palm biomass briquettes that contain novel mixture of pulverized EFB and PE plastics waste were investigated experimentally. The briquettes were produced with different mixing ratio of EFB and PE plastics (weight ratios of 95:5, 90:10 and 85:15), under various heating temperatures (130-190 ) and at constant compaction pressure of 7 MPa. Based on the results, it can be said that heating temperature plays a significant role in affecting physical properties such as relaxed density and compressive strength. The values of relaxed density and compressive strength are within the range of 1100 to 1300 kg/m3 and 0.8 to 1.2 MPa, respectively. Meanwhile, mixing ratio does affect relaxed density and gross calorific value. All values of gross calorific (17900 to 21000 kJ/kg) and moisture content (7% to 9%) are found to fulfill the requirement for commercialization as stated by DIN51731 (gross calorific value>17500 kJ/kg and moisture content<10%). Even though the values of ash content (3% to 4%) exceed the limitation as stated by the standard (<0.7%), it is still considered very competitive if compared to the commonly used local briquette that contains mesocarp fibre and shell (5.8%). Finally, it can be concluded that the best quality of briquette can be achieved when highest composition of PE plastics (weight percentage of 15%) is used and the briquetting process is performed at the highest temperature (190 ).  


2017 ◽  
Vol 2 (1) ◽  
pp. 43 ◽  
Author(s):  
Lilih Sulistyaningkarti ◽  
Budi Utami

This study aimed to (1) make charcoal briquettes from corncobs organic waste; (2) determine the right type of adhesive to make a corncobs charcoal briquette to produce good quality briquettes; (3) determine the appropriate percentage of adhesive to produce corncobs briquettes to produce good quality briquettes; and (4) know the best characteristics of corncobs charcoal briquettes which include moisture content, volatile content, ash content, carbon content and caloric value. The sample used was corncob obtained from a corn farmer in Pasekan Village, Wonogiri regency. This research used experimental method in laboratory with several stages, namely: (1) preparation of materials; (2) carbonization; (3) crushing and sifting of charcoal (4) mixing charcoal with adhesive and water; (5) briquetting; (6) briquette drying; And (7) analysis of briquette quality. This adhesive types used in this research were tapioca flour and wheat flour and the percentage of adhesive material were 5%, 10% and 15% from total weight of charcoal powder. The result of the research were: (1) charcoal briquettes as alternative energy source can be made from biomass waste (corncobs organic waste); (2) charcoal briquettes from organic corncobs wastes using tapioca flour adhesives have better quality than using wheat flour adhesives; (3) the both charcoal briquettes using 5% of tapioca flour adhesive and 5% wheat flour adhesives have better quality than 10% and 15% in terms of moisture content, volatile content, ash content, carbon content and calorific value; and (4) the best characteristics obtained are for the charcoal briquettes using 5% of tapioca flour adhesive, which have water content of 3,665%; volatile matter amounting of 11.005%; ash content of 4.825%; fixed carbon content of 80.515%; and high heat value of 5661,071%.


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Abdul Ghofur ◽  
Aqli Mursadin

Berdasarkan ketersediaan sumber daya gambut yang besar di Provinsi Kalimantan Selatan, maka peluang untuk memanfaatkan potensi tanah gambut sebagai sumber energi alternatif sangat besar. Sumber energi yang didapat dari minyak, gas bumi, dan batubara sedikit demi sedikit berkurang, sehingga perlu dicarikan sumber energi alternatif. Peneliti Lahan Gambut dari Balai Penelitian Tanaman Rawa Pertanian (Balittra) Banjarbaru, Dr Muhammad Noor dalam berita Banjarmasin post tanggal 24 Nopember 2005 tentang “PLN Melirik Lahan Gambut”  menjelaskan, dalam gambut memang terdapat energi yang dapat membangkitkan tenaga listrik, energi yang terdapat dalam gambut cukup tinggi yakni sekitar 5.000 kilo kalori per kilogram. Di Kalsel, keberadaannya setara dengan 65 miliar barel minyak bumi atau sebesar 10 juta barel per tahun energi yang dihasilkan.  Berdasarkan latar belakang tersebut beberapa perumusan masalah  dalam penelitian ini adalah bagaimana usaha untuk melakukan tanah gambut untuk menjadi sumber energi alternatif  yang berkualitas dan  mudah digunakan,  bagimana karateristik tanah gambut sebagai sumber energi alternatif. Salah  satu  cara  untuk mengoptimalkan potensi gambut adalah memanfaatkannya sebagai bahan baku dalam pembuatan briket yang dapat dijadikan sebagai bahan bakar altematif  .  Tujuan dari penelitian ini adalah a) memanfaatkan ketersediaan sumber daya alam dengan menggunakan tanah gambut sebagai energi alternatif  dan b ) mengetahui Nilai kalori, berat jenis, kadar air dan kadar abu di wilayah studi. Tanah gambut yang digunakan sebagai  bahan baku untuk energi alternatif  berasal  dari Desa Gambut Kabupaten Banjar.  Prosedur pelaksanaan penelitian dilakukan terhadap karateristik tanah  gambut diwilayah studi  sebagai sumber energi. Dari hasil penelitian ini menunjukan bahwa untuk tanah gambut di Desa Gambut Kec. Gambut bisa   untuk digunakan sebagai bahan bakar alternatif dengan  teknologi pembriketan. Dengan nilai Kadar Air  0,10%, Kadar Abu 72,65%, berat jenis 2,11 Gs dengan nilai kalori 579,2 cal/g bisa digunakan sebagai bahan  bakar alternatif. Key word : energi alternatif, nilai kalori, tanah gambut. Based on the availability of large peat resources in the province of South Kalimantan, the opportunity to utilize the potential of peat soil as an alternative energy source is very large. Energy sources derived from oil, natural gas, and coal gradually diminish, so alternative energy sources are needed. Peatland Researchers from the Agricultural Swamp Research Institute (Balittra) Banjarbaru, Dr. Muhammad Noor in the Banjarmasin post on November 24, 2005 on "PLN Looking at Peatlands" explained that in peat there is indeed energy that can generate electricity, energy contained in peat quite high at around 5,000 kilos of calories per kilogram. In South Kalimantan, its existence is equivalent to 65 billion barrels of oil or 10 million barrels per year of energy produced. Based on this background, several formulations of the problem in this study are how to make peat soils to be a quality alternative energy source that is easy to use, how the characteristics of peat soil as an alternative energy source. One way to optimize the potential of peat is to use it as a raw material in making briquettes that can be used as alternative fuels. The purpose of this study is a) utilizing the availability of natural resources by using peat soil as alternative energy and b) knowing the calorific value, specific gravity, moisture content and ash content in the study area. Peat soil used as raw material for alternative energy comes from the Gambut Village of Banjar Regency. The procedure for conducting research was carried out on the characteristics of peat soil in the study area as an energy source. From the results of this study indicate that for peat soil in the village of Gambut Kec. Peat can be used as an alternative fuel with briquette technology. With a value of 0.10% moisture content, ash content 72.65%, specific gravity of 2.11 Gs with a calorific value of 579.2 cal / g can be used as an alternative fuel. Key word: alternative energy, calorific value, peat soil.


2017 ◽  
Vol 18 (2) ◽  
Author(s):  
Widodo Hari Prabowo ◽  
Muhammad Viki Lutfiana ◽  
Rosid Rosid ◽  
Muhammad Burhanuddin Ubaidillah

ABSTRAK Energi yang berasal dari biomassa misalnya limbah baglog, yang selama ini dibuang atau tidak dimanfaatkan, merupakan limbah yang dapat dikonfersi menjadi sumber energi alternatif pengganti bahan bakar fosil. Limbah baglog  jamur dimanfaatkan sebagai bahan bakar dengan cara, mengubah limbah tersebut menjadi biobriket. Tujuan penelitian dilakukan untuk pengkajian laju pembakaran, nilai kalor, kadar abu, kadar air, kadar zat yang menguap, kadar karbon dan drop test pada biobriket. Metode yang digunakan dalam pembuatan menggunakan perbandingan A (1:1:1) dengan komposisi tepung kanji 250 gram limbah baglog 250 gram dan air 250 ml, perbandingan B (1:2:2) dengan komposisi tepung kanji 250 gram limbah baglog 500 gram dan air 500 ml, perbandingan C (1:3:3) dengan komposisi tepung kanji 250 gram  limbah baglog 1000 gram dan air 1000 ml. Pembutan yang pertama dengan penghancuran limbah baglog dan pengeringan, pencampuran tepung, limbah baglog dan air, pengepresan biobriket kemudian dikeringkan. Hasil penelitian memperoleh nilai kalor, kadar air, kadar karbon dan kadar zat yang menguap terdapat pada biobriket sampel A (1:1:1) sebesar 4065,69 kal/g, 5%, 15,4%, dan 71,4 %  untuk kadar abu terbaik terdapat pada sampel B (1:2:2) sebesar 4,8%. Kata kunci: Limbah baglog, biobriket, bahan bakar fosil, jamur tiram  ABSTRACT Energy derived from biomass such as baglog waste that has been disposed or not utilized, is a waste that can be converted into alternative energy sources of fossil fuel. Wastes baglog mushrooms are used as fuel by the way, turning the waste into bio briquette. The aim of this research is to test the combustion rate, calorific value, ash content, moisture content, volatile substance content, carbon content and drop test on bio briquett. The method used in the preparation uses A (1: 1: 1) comparison with starchy flour composition 250 grams of baglog 250 grams and 250 ml water, B ratio (1: 2: 2) with  starchy flour composition 250 grams baglog 500 grams and water 500 ml, C ratio (1: 3: 3) with starch flour composition 250 grams of baglog waste 1000 grams and water 1000 ml. Making the first with the destruction of baglog waste and drying, mixing flour, baglog waste and water, briquette pressing then dried. The results of the research were obtained values of caloric, water content, carbon content and the content of volatile substances in A (1: 1: 1) biobriket of 4065.69 cal / g, 5%, 15.4%, and 71.4% The best ash content was found in sample B (1: 2: 2) of 4.8%. The results obtained of calorific value, moisture content, carbon content and volatile substances were found in A (1: 1: 1) sample biobriket of 4065, 69 cal / g, 5%, 15.4%, and 71.4% for the best ash content were found in sample B (1: 2: 2) of 4.8%. Keywords : Baglog waste, bio briquette, fossil fuel, oyster mushroom


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Assefa Tesfaye ◽  
Fentahun Workie ◽  
Venkatesh S. Kumar

Biomass energy accounts for more than 92 percent of overall energy consumption in Ethiopia. As a result, Ethiopia is one of the world’s most biomass-dependent countries. The high reliance on wood fuels and agricultural residues for fuel harms society’s social, economic, and environmental well-being. This study aims to create and test the quality of fuel briquettes made from the coffee husk. Also built and produced are a carboniser/charcoal kiln, a manually operated molder system, and a briquette stove for burning the manufactured briquette. The carboniser converts 15 kg of raw coffee husk into 6 kg of carbonised char in 25 minutes, and the manually operated briquette molder can press 30 kg per hour. The efficiency of converting raw coffee husk into carbonised char content was 40.12%. In the geological survey of Ethiopia, the geochemical laboratory directorate received triplicate samples of the fuel briquette charcoal for analysis. Moisture content, fixed carbon content, ash content, sulfur content, and calorific value were determined using a bomb calorimeter and a ceramic lining furnace. Physical properties of fuel briquettes ranged from 10.03% moisture content, 970 kg/m3 density, 81% fixed carbon, 5.15% ash content, 0% sulfur, and 30.54 Kcal/kg higher heating value, according to laboratory results. The results of the study revealed that the coffee husk fuel briquettes produced have more positive characteristics. Fuel briquettes were cost-effective and environmentally friendly and reduced deforestation compared to firewood. This study clearly shows that briquettes made from coffee husk could be used as an alternative energy source when this kind of waste is well managed.


2021 ◽  
Vol 14 (1) ◽  
pp. 33-39
Author(s):  
Muhamad Rizky Adipratama ◽  
Reza Setiawan ◽  
Najmudin Fauji

Biomass energy is one that can be used as an alternative energy as a substitute for fossil fuels and can also be useful for reducing environmental pollution due to increasing waste or waste. The manufacture of briquettes from chicken feather waste, wood shavings and rice husk waste aims to help deal with the problem of waste and use it as an alternative fuel. The making of briquettes is carried out by the process of drying the ingredients, charcoal, milling, sieving, kneading, printing, drying, proximate testing and measuring emissions on the briquettes. In this study, the composition of a mixture of chicken feathers (30%, 40%, 50%), wood shavings and rice husk (35%, 30%, 25%) was treated as well as particle sizes of 30 mesh and 60 mesh. The results of this study indicate that the lowest moisture content is in sample B2 of 4.5%. The lowest levels of volatile matters were in sample A1 of 37.4%. The lowest ash content was found in sample B3 at 10.8%. The highest fixed carbon was found in sample A3 at 45.1%. The highest calorific value (Gross Calorific Value) is found in the B3 sample of 5594 Kcal / Kg. And it has the highest CO, CO2, and HC emissions produced from the briquettes, namely 0.24%, 0.8%, 46 ppm. The properties of briquettes that have met SNI standards are moisture content, calorific value (except for sample A1), and the resulting emissions. And those that have not met SNI standards are the levels of volatile matter, ash content and fixed carbon. The resulting briquette can be used because the calorific value obtained is quiet high, which is above the specified standard of ≥ 5000 Kcal/Kg.


2019 ◽  
Vol 1 (1) ◽  
pp. 14-20
Author(s):  
Herlina Anggriani Marbun ◽  
Giyanto . ◽  
Hardiansyah Sinaga

Fluctuations in fuel prices stimulate efforts to find alternative energy that is environmentally friendly. The processing of oil palm plantations produces waste or quite a lot of products ± 23% of the weight of fresh fruit bunches. Utilization of Palm Empty Fruit Bunch (PEFB) as biobriquettes was chosen in this study by mixing other ingredients, namely coconut shell. The treatment in the study was the composition of the mixture of PEFB and shell PEFB-1, PEFB-2, PEFB-3, PEFB-4 and PEFB-5 with a ratio of weight (100% -0%), (75% -25%), (50% -50%), (25% -75%) and     (0% -100%). The research was carried out in Medan STIPAP, ITM Laboratory and PTKI Alboratorium in April - September 2018. Observation parameters were heating value, water content, ash content, density, compressive strength and combustion rate. The results showed that briquettes with dominant PEFB material, PEFB-1 and PEFB-2, produced less quality biobriquettes, especially low calorific value. The best treatment is PEFB-4 (25% EFB and 75% shell) with characters that appropriate to the specifications of the quality standard of charcoal briquettes. 


2021 ◽  
Vol 13 (6) ◽  
pp. 3069 ◽  
Author(s):  
Anwar Ameen Hezam Saeed ◽  
Noorfidza Yub Harun ◽  
Muhammad Roil Bilad ◽  
Muhammad T. Afzal ◽  
Ashak Mahmud Parvez ◽  
...  

An agricultural waste-based source of energy in the form of briquettes from rice husk has emerged as an alternative energy source. However, rice husk-based briquette has a low bulk density and moisture content, resulting in low durability. This study investigated the effect of initial moisture contents of 12%, 14%, and 16% of rice husk-based briquettes blended with 10 wt% of kraft lignin on their chemical and physical characteristics. The briquetting was done using a hand push manual die compressor. The briquette properties were evaluated by performing chemical (ultimate and proximate analysis, thermogravimetric analysis), physical (density, durability, compressive strength, and surface morphology) analyses. The durability values of all briquette samples were above 95%, meeting the standard with good compressive strength, surface morphology, and acceptable density range. The briquette made from the blend with 14% moisture content showed the highest calorific value of 17.688 MJ kg−1, thanks to its desirable morphology and good porosity range, which facilitates the transport of air for combustion. Overall, this study proved the approach of enhancing the quality of briquettes from rice husk by controlling the moisture content.


Sign in / Sign up

Export Citation Format

Share Document