SEM, EDX spectroscopy and real-time optical microscopy of electroformed silicon nitride-based light emitting memory device

2020 ◽  
Vol 89 (1) ◽  
pp. 10303
Author(s):  
Mustafa Anutgan ◽  
Tamila Anutgan ◽  
Ismail Atilgan

An ordinary amorphous silicon nitride-based p-i-n diode was electroformed under optimized process conditions, which led to its instant transformation to a semiconductor device with two-in-one properties: a bright visible light emitting diode and a resistive memory switching device; i.e. light emitting memory (LEM). In the present work, for a thorough understanding of the changes that occur during electroforming, SEM images and EDX analyses were performed on both top-view and cross-section of both as-deposited and electroformed diodes. It was seen from the top-view images that while the diode surface of the as-deposited diode had a smooth and homogeneous ITO top electrode, the electroformed diode exhibited a rough ITO surface. EDX analyses showed that ITO was completely removed from many point-like regions on the diode surface. Cross-sectional SEM images showed no clue of any material diffusion through the diode structure during electroforming, which was one of the suspected situations about our model. EDX results also showed no considerable increase of any of the ingredients of the ITO alloy (In, Sn or O) across the semiconductor (p-i-n) layers of the electroformed diode. In contrast to the roughened surface of the electroformed diode, the silicon-based layers of the diode below the ITO electrode seemed to be well-preserved. Real-time optical microscopy showed that the light is emitted through the regions of the diode surface where the residual ITO top electrode is present.

Nanoscale ◽  
2015 ◽  
Vol 7 (27) ◽  
pp. 11692-11701 ◽  
Author(s):  
M. Tchernycheva ◽  
V. Neplokh ◽  
H. Zhang ◽  
P. Lavenus ◽  
L. Rigutti ◽  
...  

SEM image and electron beam induced current map of InGaN/GaN nanowire core–shell led in cross-sectional and top view configurations.


VASA ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 115-125 ◽  
Author(s):  
Xin Li ◽  
Daniel Staub ◽  
Vasileios Rafailidis ◽  
Mohammed Al-Natour ◽  
Sanjeeva Kalva ◽  
...  

Abstract. Ultrasound has been established as an important diagnostic tool in assessing vascular abnormalities. Standard B-mode and Doppler techniques have inherent limitations with regards to detection of slow flow and small vasculature. Contrast-enhanced ultrasound (CEUS) is a complementary tool and is useful in assessing both the macro- and microvascular anatomy of the aorta. CEUS can also provide valuable physiological information in real-time scanning sessions due to the physical and safety profiles of the administered microbubbles. From a macrovascular perspective, CEUS has been used to characterize aortic aneurysm rupture, dissection and endoleaks post-EVAR repair. With regard to microvasculature CEUS enables imaging of adventitial vasa vasorum thereby assessing aortic inflammation processes, such as monitoring treatment response in chronic periaortitis. CEUS may have additional clinical utility since adventitial vasa vasorum has important implications in the pathogenesis of aortic diseases. In recent years, there have been an increasing number of studies comparing CEUS to cross-sectional imaging for aortic applications. For endoleak surveillance CEUS has been shown to be equal or in certain cases superior in comparison to CT angiography. The recent advancement of CEUS software along with the ongoing development of drug-eluting contrast microbubbles has allowed improved targeted detection and real-time ultrasound guided therapy for aortic vasa vasorum inflammation and neovascularization in animal models. Therefore, CEUS is uniquely suited to comprehensively assess and potentially treat aortic vascular diseases in the future.


Author(s):  
Chi-Lin Huang ◽  
Yu Hsiang Shu

Abstract Conventional isolation techniques, such as Optical Beam Induced Resistance Change (OBIRCH) or photoemission microscopy (PEM) frequently fail to locate failure points when only applied to power pin of the semiconductor device. In this paper, a novel OBIRCH failure isolation technique is utilized to detect leakage failures. Different test conditions are presented to identify the differences in current when all input pins are pulled high in an OBIRCH system. In order to verify a failure point, it is necessary to perform electrical analysis of the suspected failure point in the failing sample. In general, Conductive Atomic Force Microscope (C-AFM) and a Nano-Prober is sufficient to provide the electrical data required for failure analysis. Experiment results, however, prove that this novel OBIRCH failure isolation technique is effective in locating the failure point, especially for leakage failures. The failure mechanism is illustrated using cross-sectional TEM.


2020 ◽  
Vol 18 ◽  
Author(s):  
Pegah Shakib ◽  
Mohammad Reza Zolfaghari

Background: Conventional laboratory culture-based methods for diagnosis of Streptococcus pneumoniae are time-consuming and yield false negative results. Molecular methods including real-time (RT)-PCR rapid methods and conventional PCR due to higher sensitivity and accuracy have been replaced instead traditional culture assay. The aim of the current study was to evaluate lytA gene for detection of Streptococcus pneumoniae in the cerebrospinal fluid of human patients with meningitis using real-time PCR assay. Material and Methods: In this cross-sectional study, a total of 30 clinical specimens were collected from patients in a period from September to December 2018. In order to evaluate the presence of lytA gene, conventional and real-time PCR methods were used without culture. Results: From 30 sputum samples five (16.66%) isolates were identified as S. pneumoniae by lytA PCR and sequencing. Discussion: In this research, an accurate and rapid real-time PCR method was used, which is based on lytA gene for diagnosis of bacteria so that it can be diagnosed. Based on the sequencing results, the sensitivity for detection of lytA gene was 100% (5/5).


2021 ◽  
pp. 2000230
Author(s):  
Lukas Elsinger ◽  
Robin Petit ◽  
Frederik Van Acker ◽  
Natalia K. Zawacka ◽  
Ivo Tanghe ◽  
...  

1995 ◽  
Vol 389 ◽  
Author(s):  
K. C. Saraswat ◽  
Y. Chen ◽  
L. Degertekin ◽  
B. T. Khuri-Yakub

ABSTRACTA highly flexible Rapid Thermal Multiprocessing (RTM) reactor is described. This flexibility is the result of several new innovations: a lamp system, an acoustic thermometer and a real-time control system. The new lamp has been optimally designed through the use of a “virtual reactor” methodology to obtain the best possible wafer temperature uniformity. It consists of multiple concentric rings composed of light bulbs with horizontal filaments. Each ring is independently and dynamically controlled providing better control over the spatial and temporal optical flux profile resulting in excellent temperature uniformity over a wide range of process conditions. An acoustic thermometer non-invasively allows complete wafer temperature tomography under all process conditions - a critically important measurement never obtained before. For real-time equipment and process control a model based multivariable control system has been developed. Extensive integration of computers and related technology for specification, communication, execution, monitoring, control, and diagnosis demonstrates the programmability of the RTM.


1983 ◽  
Vol 23 ◽  
Author(s):  
T. P. Smith ◽  
P. J. Stiles ◽  
W. M. Augustyniak ◽  
W. L. Brown ◽  
D. C. Jacobson ◽  
...  

ABSTRACTFormation of buried insulating layers and redistribution of impurities during annealing are important processes in new semiconductor device technologies. We have studied pulsed ruby laser and furnace annealing of high dose (D>1017 N/cm2) 50 KeV nitrogen implanted silicon. Using He Back scattering and channeling, X-ray diffraction, transmission electron microscopy, and infrared transmission spectroscopy, we have compared liquid and solid phase regrowth, diffusion, impurity segregation and nitride formation. As has been previously reported, during furnace annealing at or above 1200C nitrogen redistributes and forms a polycrystalline silicon nitride (Si3N4 ) layer. [1–4] In contrast, pulsed laser annealing produces a buried amorphous silicon nitride layer filled with voids or bubbles below a layer of polycrystalline silicon.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yaovi M. G. Hounmanou ◽  
Murielle S. S. Agonsanou ◽  
Victorien Dougnon ◽  
Mahougnon H. B. Vodougnon ◽  
Ephraim M. Achoh ◽  
...  

A cross-sectional study was conducted in March 2016 to assess the need of mobile phone technologies for health surveillance and interventions in Benin. Questionnaires were administered to 130 individuals comprising 25 medical professionals, 33 veterinarians, and 72 respondents from the public. All respondents possess cell phones and 75%, 84%, and 100% of the public, medical professionals, and veterinarians, respectively, generally use them for medical purposes. 75% of respondents including 68% of medics, 84.8% of veterinarians, and 72.2% of the public acknowledged that the current surveillance systems are ineffective and do not capture and share real-time information. More than 92% of the all respondents confirmed that mobile phones have the potential to improve health surveillance in the country. All respondents reported adhering to a nascent project of mobile phone-based health surveillance and confirmed that there is no existing similar approach in the country. The most preferred methods by all respondents for effective implementation of such platform are phone calls (96.92%) followed by SMS (49.23%) and smart phone digital forms (41.53%). This study revealed urgent needs of mobile phone technologies for health surveillance and interventions in Benin for real-time surveillance and efficient disease prevention.


2010 ◽  
Vol 434-435 ◽  
pp. 263-266
Author(s):  
Chien Chen Diao ◽  
Chia Ching Wu ◽  
Cheng Fu Yang ◽  
Chao Chin Chan

In this study, 0.95 (Na0.5Bi0.5)TiO3-0.05 BaTiO3 + 1 wt% Bi2O3 (NBT-BT3) composition sintered at 1200oC for 2h is used as target to deposit the NBT-BT3 thin films. The excess 1wt% Bi2O3 is used to compensate the vaporization of Bi2O3 during the deposition process. Ferroelectric NBT-BT3 thin films are deposited on SiO2/Si and Pt/Ti/SiO2/Si substrates using RF magnetron sputter method using the ceramic target fabricated by ourselves. After depositing under the optimal parameters, the thin films are then heated by a conventional thermal annealing (CFA) process conducted in air at temperatures ranging from 600- 800oC for 60min. The morphologies of NBT- BT3 thin films are observed using SEM the crystalline structures of NBT-BT3 thin films are investigated using XRD patterns. The large memory window and stable leakage current density examination reveals that NBT-BT3 thin films annealed on 600oC are better than other thin films under different CTA temperatures. Finally, the top view and cross-sectional images of SEM, memory windows, leakage currents and polarization characteristics of NBT-BT3 thin films are also well developed.


Sign in / Sign up

Export Citation Format

Share Document