scholarly journals Modeling of Thermophysical Phenomena When Cutting with Coated Tools

2021 ◽  
Vol 248 ◽  
pp. 04019
Author(s):  
Marina Volosova ◽  
Artur Migranov ◽  
Maksim Rai

The results of computer simulation of thermophysical phenomena in the contact zone during blade cutting of metals with multi-layer composite wear-resistant coatings that ensure the adaptability of the cutting wedge to friction conditions are presented. On-site experimental studies of the cutting temperature during turning with various coatings, structural-phase analysis of the surface layer of the cutting tool to explain the mechanism of formation of secondary structures with a shielding effect – the effect of selforganization.

Author(s):  
A.M. MIGRANOV ◽  
◽  
M.Sh. MIGRANOV ◽  
A.F. SADYKOV ◽  
I.I. KHUSAENOV ◽  
...  

The results of the computer modeling of thermophysical phenomena in the contact zone during blade cutting of metals with multi-layer composite wear-resistant coatings are presented. These results ensure the adaptability of the cutting wedge to friction conditions. In-situ experimental studies of the cutting temperature during turning with various coatings and structural-phase analysis of the surface layer of the cutting tool were carried out to explain the mechanism of formation of secondary structures with a shielding effect - the self-organization effect.


2016 ◽  
Vol 857 ◽  
pp. 199-205 ◽  
Author(s):  
Alexey Anatolevich Vereschaka ◽  
Julia Prilukova ◽  
Anatoly S. Vereshchaka ◽  
Jury Bublikov ◽  
Anatoly Aksenenko

The study examines the effect of TiN coatings, deposited on inserts of cutting ceramics, on the cutting temperature in machining of alloyed case-hardened steels. The study has revealed a substantial decrease of temperature during cutting with coated tools of cutting ceramics as compared with temperature for uncoated tools of cutting ceramics. Positive transformation of the thermal state during the cutting process with the use of coated ceramic tools can improve the quality of machined surfaces. The study has revealed the reduction in thickness of "white layer" of surfaces of machined workpieces of hardened high-alloyed steels in use of coated ceramic tools and the increase of cutting properties of coated ceramic tools.


2021 ◽  
Author(s):  
Tianmei Hao ◽  
Jin Du ◽  
Xue Zhang ◽  
Guosheng Su ◽  
Peirong Zhang ◽  
...  

Abstract Coupled with a thermo-mechanical metal cutting process, rapid tool wear, higher surface roughness and mass heat are caused by the rapid plastic deformation of the workpiece and by the friction along the tool-chip interface. This phenomenon is more predominant in the machining of difficult-to-cut materials. DLC film has been applied as coating material in the machining of difficult-to-cut materials, and shows a good cutting performance. In this study, Cr/W-DLC/DLC coated tools were compared with other three coated tools (i.e., TiC-, TiAlN-, Al 2 O 3 -) to investigate the cutting performance in the machining of Al-Si alloy (AC9B). In addition, the influence of Cr/W-DLC/DLC coated tools on the cutting performance under different cutting speeds was studied. Cutting force, cutting temperature, heat transfer coefficient of the rake face of the tool, cutting deformation rate, plastic deformation of machined surface, the interface temperature and stress were investigated numerically based on Finite Element Method (FEM). Actual cutting experiments were carried out to the verification of the FEM models by means of the cutting force and cutting temperature measurement. The investigation results showed that Cr/W-DLC/DLC coated tools has the lowest cutting force and cutting temperature, good cutting deformation characteristics and lower coating-substrate interface temperature and stress, however appears the maximum value of heat partition coefficient into the cutting tool. With the increasing of cutting speeds, cutting force and cutting temperature showed an increase trend, while the plastic deformation depth of machined surface and heat partition into cutting tool all showed a decrease trend. This investigation can provide the theory basis or technical guidance for the cutting practice of Cr/W-DLC/DLC coated tools.


2021 ◽  
Vol 248 ◽  
pp. 04018
Author(s):  
Sergey Grigoriev ◽  
Mars Migranov ◽  
Abdumalik Seitkulov

In the conditions of high-speed processing of parts of complex configuration, with a large end and longitudinal length, from hard-to-work steels and alloys, it is difficult to ensure the wear resistance of the cutting tool in the aisles of one technological passage. To ensure the appropriate quality indicators of the surface layer, it is impossible to replace a worn-out cutting tool. In connection with the above, the problem of ensuring the operability (wear resistance) of the cutting tool is acute. The results of theoretical and experimental studies of contact phenomena in blade cutting based on the thermodynamics of non – equilibrium processes and from the standpoint of self-organization of the tribosystem are presented. the developed thermodynamic model of blade processing with variable cutting modes (non-stationary) allows to minimize the wear of the cutting tool and generally increase production efficiency by accelerating the drive of the main movement of the metal-cutting machine.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 355 ◽  
Author(s):  
Guangchao Hao ◽  
Zhanqiang Liu ◽  
Xiaoliang Liang ◽  
Jinfu Zhao

TiAlN has been widely used in cutting tool coating due to its excellent mechanical and thermal performances. However, the research on the TiAlN coating effect on cutting temperature is not comprehensive enough. In this paper, the friction tests at elevated temperature and hard machining H13 hardened steel tests are conducted by using TiAlN coated tools and uncoated tools, respectively. The results of using TiAlN coated tools are compared with those from using uncoated tools. It is found that the coefficient of friction (COF) between TiAlN coated tool and H13 hardened steel is reduced to 0.63 at 800 °C. The COF value is 0.75 for uncoated tool. Under the same cutting conditions, the TiAlN coating shortens tool-chip contact length. The tangential cutting forces and cutting zone temperatures are decreased with smaller COF and shorter tool-chip contact length. Due to the lower thermal conductivities of TiAlN coating and the Al2O3 oxide layer formatted at tool rake face, the cutting heat conducted into cutting tool substrate was reduced. The cutting temperatures in TiAlN coated tool substrate are decreased by at least 10.68% in this study. The TiAlN coating reduces the cutting temperature by decreasing the cutting heat generation and conduction.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1783
Author(s):  
Hamza A. Al-Tameemi ◽  
Thamir Al-Dulaimi ◽  
Michael Oluwatobiloba Awe ◽  
Shubham Sharma ◽  
Danil Yurievich Pimenov ◽  
...  

Aluminum alloys are soft and have low melting temperatures; therefore, machining them often results in cut material fusing to the cutting tool due to heat and friction, and thus lowering the hole quality. A good practice is to use coated cutting tools to overcome such issues and maintain good hole quality. Therefore, the current study investigates the effect of cutting parameters (spindle speed and feed rate) and three types of cutting-tool coating (TiN/TiAlN, TiAlN, and TiN) on the surface finish, form, and dimensional tolerances of holes drilled in Al6061-T651 alloy. The study employed statistical design of experiments and ANOVA (analysis of variance) to evaluate the contribution of each of the input parameters on the measured hole-quality outputs (surface-roughness metrics Ra and Rz, hole size, circularity, perpendicularity, and cylindricity). The highest surface roughness occurred when using TiN-coated tools. All holes in this study were oversized regardless of the tool coating or cutting parameters used. TiN tools, which have a lower coating hardness, gave lower hole circularity at the entry and higher cylindricity, while TiN/TiAlN and TiAlN seemed to be more effective in reducing hole particularity when drilling at higher spindle speeds. Finally, optical microscopes revealed that a built-up edge and adhesions were most likely to form on TiN-coated tools due to TiN’s chemical affinity and low oxidation temperature compared to the TiN/TiAlN and TiAlN coatings.


2014 ◽  
Vol 1017 ◽  
pp. 329-333
Author(s):  
Syunki Shimada ◽  
Masao Kohzaki

This study is developing environmentally friendly cutting technologies of difficult-to-machine materials by MQL (Minimum Quantity Lubrication) cutting with Ti-B coated tools. In this research, we performed cutting experiments of difficult-to-machine materials in dry, MQL and wet conditions with non-coated tools. Cutting resistance in the MQL cutting was almost the same as that in the wet cutting. Moreover, damage of the cutting tool was not observed after the MQL cutting. Therefore the MQL cutting is expected to become an advanced cutting technology by using Ti-B coated tools because Ti-B film had high temperature lubricating properties and high wear resistance.


Author(s):  
LR Bhandarkar ◽  
PP Mohanty ◽  
SK Sarangi

The drive of this research is to examine the machinability of 100Cr6 bearing steel using advanced C-type cutting tools. Experimental studies investigated the effects of machining variables on the surface quality, chip reduction coefficient and cutting force. Seven advanced coated tools were checked for characterization by micro hardness (VHN), adhesion quality, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). The experimental trials were planned by Taguchi’s L18 orthogonal array using a mixed-level design. Two numerical machining variables feed rate and cutting speed, and one categorical machining variable tool type was taken into consideration while a constant depth of cut was kept for all trails. A combined Taguchi-Satisfaction function distance measure approach was implemented for multi-response optimization. The most promising machining parameter setting for minimization of surface roughness, cutting force, and chip reduction coefficient was identified. The most important process parameter was found to be tool-type. Ceramics tools are found to be best trailed by WC coated tools under most of the conditions. Lower tool wear was observed in the CBN tool as compared to others.


2013 ◽  
Vol 690-693 ◽  
pp. 3359-3364
Author(s):  
Shou Jin Sun ◽  
Milan Brandt ◽  
John P.T. Mo

A higher strength and heat resistance are increasingly demanded from the advanced engineering materials with high temperature applications in the aerospace industry. These properties make machining these materials very difficult because of the high cutting forces, cutting temperature and short tool life present. Laser assisted machining uses a laser beam to heat and soften the workpiece locally in front of the cutting tool. The temperature rise at the shear zone reduces the yield strength and work hardening of the workpiece, which make the plastic deformation of the hard-to-machine materials easier during machining. The state-of-the-art, benefits and challenges in laser assisted machining of metallic materials are summarized in this paper, and the improvement of tool life is discussed in relation to laser power, beam position and machining process parameters.


2019 ◽  
Vol 2019 (6) ◽  
pp. 30-37
Author(s):  
Александр Анцев ◽  
Aleksandr Ancev

The process effectiveness of blade cutting is defined considerably with the prediction accuracy of cutting tool durability term. But, in spite of that cutting processes have a probabilistic character, in modern mechanical engineering there are used durability de-pendences describing only the dependence of an average period of blade cutting tool durability upon cutting modes without taking into account a stochastic nature of tool wear depending upon many factors. For ac-counting cutting process variability there are offered stochastic models of cutting tool failure, but they hold good for a cutting tool with one cutting edge and in the case with a multi-blade cutting tool they must be speci-fied. In the paper it is defined that at a fan wear model with the increase of the blade number the period of cutting tool durability decreases, as failure likelihood of even one blade increases because of the blade properties spread of one tool. The factor of a durability period variation decreases with the growth of the blade number because of the decrease of an average durability period decrease. In the case of a wear accumulation model the multi-blade tool reliability does not depend upon the blade number. The dependences of an average period of durability and a factor of variation at a complex model of wear are similar to the case with the fan model of wear, but their values will be higher. In the case of a destruction model the factor of multi-blade tool durability variation does not depend upon the blade number, but an average durability depends considerably upon the blade number, but the dependence appearance corresponds to the dependence of an average durability at a fan model of wear. The type of the dependence of durability average period upon on the blade number at a generalized model of failures is similar to the cases considered previously, and a kind of the dependence of a variation factor changes depending on model parameters


Sign in / Sign up

Export Citation Format

Share Document