scholarly journals VINCI®, the european reference for ariane 6 upper stage cryogenic propulsive system

Author(s):  
P. Alliot ◽  
J.-F. Delange ◽  
V. De Korver ◽  
J.-M. Sannino ◽  
A. Lekeux ◽  
...  

The intent of this publication is to provide an overview of the development of the VINCI® engine over the period 2014–2015. The VINCI® engine is an upper stage, cryogenic expander cycle engine. It combines the required features of this cycle, i. e., high performance chamber cooling and high performance hydrogen turbopump, with proven design concepts based on the accumulated experience from previous European cryogenic engines such as the HM7 and the VULCAIN®. In addition, its high performance and reliability, its restart and throttle capability offer potential applications on various future launcher upper stages as well as orbital spacecraft. At the end of 2014, the VINCI® successfully passed the Critical Design Review that was held after the major subsystem (combustion chamber, fuel and oxygen turbopump) had passed their own Critical Design Review all along the second half of 2014. In December, a Ministerial Conference at government level gave priority to the Ariane 6 program as Europe future launcher. In the framework of this decision, VINCI® was confirmed as the engine to equip Ariane 6 cryogenic upper stage engine. This publication shows how the VINCI development is progressing toward qualification, and also how the requirements of the new Ariane 6 configuration taken into account, i. e., offering new opportunities to the launch system and managing the new constraints. Moreover, the authors capitalize on the development already achieved for the evolution of Ariane 5. In parallel to completing the engine development and qualification, the configuration and the equipment of the propulsive system for Ariane 6 such as the components of the pressurization and helium command systems, board to ground coupling equipment, are being defined.

Author(s):  
Boris A. Sokolov ◽  
Nikolay N. Tupitsyn

The paper presents results of engineering studies and research and development efforts at RSC Energia to analyze and prove the feasibility of using the mass-produced oxygen-hydrocarbon engine 11D58M with 8.5 ton-force thrust as a basis for development of a high-performance multifunctional rocket engine with oxygen cooling and 5 ton-force thrust, which is optimal for upper stages (US), embodying a system that does not include a gas generator. The multi-functionality of the engine implies including in it additional units supporting some functions that are important for US, such as feeding propellant from US tanks to the engine after flying in zero gravity, autonomous control of the engine automatic equipment to support its firing, shutdown, adjustments during burn and emergency protection in case of off-nominal operation, as well as generating torques for controlling the US attitude and stabilizing it during coasting, etc. Replacing conventional engine chamber cooling that uses high-boiling hydrocarbon fuel with the innovative oxygen cooling makes it possible to get rid of the internal film cooling circuits and eliminate their attendant losses of fuel, while the use of the oxygen gasified in the cooling circuit of the chamber to drive the turbo pump assembly permits to design an engine that does not have a gas generator. Key words: Multifunctional rocket engine, oxygen cooling, gas-generatorless design, upper stage.


2020 ◽  
Vol 16 (4) ◽  
pp. 462-477 ◽  
Author(s):  
Patrizia Bocchetta ◽  
Domenico Frattini ◽  
Miriana Tagliente ◽  
Filippo Selleri

By collecting and analyzing relevant literature results, we demonstrate that the nanostructuring of polypyrrole (PPy) electrodes is a crucial strategy to achieve high performance and stability in energy devices such as fuel cells, lithium batteries and supercapacitors. In this critic and comprehensive review, we focus the attention on the electrochemical methods for deposition of PPy, nanostructures and potential applications, by analyzing the effect of different physico-chemical parameters, electro-oxidative conditions including template-based or template-free depositions and cathodic polymerization. Diverse interfaces and morphologies of polymer nanodeposits are also discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 197
Author(s):  
Giorgia Giovannini ◽  
René M. Rossi ◽  
Luciano F. Boesel

The development of hybrid materials with unique optical properties has been a challenge for the creation of high-performance composites. The improved photophysical and photochemical properties observed when fluorophores interact with clay minerals, as well as the accessibility and easy handling of such natural materials, make these nanocomposites attractive for designing novel optical hybrid materials. Here, we present a method of promoting this interaction by conjugating dyes with chitosan. The fluorescent properties of conjugated dye–montmorillonite (MMT) hybrids were similar to those of free dye–MMT hybrids. Moreover, we analyzed the relationship between the changes in optical properties of the dye interacting with clay and its structure and defined the physical and chemical mechanisms that take place upon dye–MMT interactions leading to the optical changes. Conjugation to chitosan additionally ensures stable adsorption on clay nanoplatelets due to the strong electrostatic interaction between chitosan and clay. This work thus provides a method to facilitate the design of solid-state hybrid nanomaterials relevant for potential applications in bioimaging, sensing and optical purposes.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shruti Vashist ◽  
M. K. Soni ◽  
P. K. Singhal

Rotman lenses are the beguiling devices used by the beamforming networks (BFNs). These lenses are generally used in the radar surveillance systems to see targets in multiple directions due to its multibeam capability without physically moving the antenna system. Now a days these lenses are being integrated into many radars and electronic warfare systems around the world. The antenna should be capable of producing multiple beams which can be steered without changing the orientation of the antenna. Microwave lenses are the one who support low-phase error, wideband, and wide-angle scanning. They are the true time delay (TTD) devices producing frequency independent beam steering. The emerging printed lenses in recent years have facilitated the advancement of designing high performance but low-profile, light-weight, and small-size and networks (BFNs). This paper will review and analyze various design concepts used over the years to improve the scanning capability of the lens developed by various researchers.


2021 ◽  
Author(s):  
Sara Reichenbach ◽  
Benjamin Kromoser ◽  
Philipp Preinstorfer ◽  
Tobias Huber

<p>With the building industry being one of the main sources of carbon dioxide emission worldwide and concrete being the main construction material, new strategies have to be developed to reduce the carbon footprint thereof. The use of high-performance materials in structural concrete, as for example textile-reinforced concrete (TRC), seems to allow for a reduction of the resource consumption and the carbon emissions. The present paper addresses potential applications of TRC examining the global warming potential (GWP) of a rail platform barrier. The resource consumption is depicted in a parametrical study in terms of the necessary component height and reinforcement area considering both the serviceability limit state (SLS) as well as the ultimate limit state (ULS). The results clearly indicate an achievable reduction of the GWP during construction when using textile reinforcement made of high-performance fibres. Furthermore, an analysis of the European market was conducted to prove the availability of this new reinforcement type. </p>


1994 ◽  
Vol 15 (2) ◽  
pp. 1-8 ◽  
Author(s):  
Choo Yuen May

Crude palm oil is the richest natural plant source of carotenoids in terms of retinol (provitamin A) equivalent. This article reports on » the carotenoids found in palm oil, its fractions, byproducts, and derivatives from the Elaeis guineensis and E. oleifera palms, including their hybrids and a back-cross, as well as the carotenoids of pressed palm fibres, second-pressed oil, palm leaves, and palm-derived alkyl esters; » two novel procedures for preparing highly concentrated sources of carotenoids (>80,000 ppm), by recovery by palm alkyl esters, and by retention and concentration in deacidified and deodorized red palm oil; » the carotenoid content and profiles of the above sources obtained by high-performance liquid chromatography; and » nutritional effects of palm oil carotenoids and their potential applications for health promotion and disease prevention.


Author(s):  
S. Blaser ◽  
J. Meyer ◽  
S. Nebiker

Abstract. With this contribution, we describe and publish two high-quality street-level datasets, captured with a portable high-performance Mobile Mapping System (MMS). The datasets will be freely available for scientific use. Both datasets, from a city centre and a forest represent area-wide street-level reality captures which can be used e.g. for establishing cloud-based frameworks for infrastructure management as well as for smart city and forestry applications. The quality of these data sets has been thoroughly evaluated and demonstrated. For example, georeferencing accuracies in the centimetre range using these datasets in combination with image-based georeferencing have been achieved. Both high-quality multi sensor system street-level datasets are suitable for evaluating and improving methods for multiple tasks related to high-precision 3D reality capture and the creation of digital twins. Potential applications range from localization and georeferencing, dense image matching and 3D reconstruction to combined methods such as simultaneous localization and mapping and structure-from-motion as well as classification and scene interpretation. Our dataset is available online at: https://www.fhnw.ch/habg/bimage-datasets


2016 ◽  
Vol 36 (4) ◽  
pp. 329-362 ◽  
Author(s):  
Nurul F. Himma ◽  
Sofiatun Anisah ◽  
Nicholaus Prasetya ◽  
I Gede Wenten

Abstract Polypropylene (PP) is one of the most used polymers for microporous membrane fabrication due to its good thermal stability, chemical resistance, mechanical strength, and low cost. There have been numerous studies reporting the developments and applications of PP membranes. However, PP membrane with high performance is still a challenge. Thus, this article presents a comprehensive overview of the advances in the preparation, modification and application of PP membrane. The preparation methods of PP membrane are firstly reviewed, followed by the modification approaches of PP membrane. The modifications includes hydrophilic and superhydrophobic modification so that the PP membranes become more suitable to be applied either in aqueous applications or in non-aqueous ones. The fouling resistant of hydrophilized PP membrane and the wetting resistant of superhydrophobized PP membrane are then reviewed. Finally, special attention is given to the various potential applications and industrial outlook of the PP membranes.


2021 ◽  
Vol 21 (4) ◽  
pp. 2647-2652
Author(s):  
Yanchen Ji ◽  
Guoxin Song ◽  
Ruiqi Yang ◽  
Longhua Ding ◽  
Aizhu Wang ◽  
...  

In this work, CeO2 nanocrystal-decorated TiO2 nanobelt for forming a CeO2@TiO2 heterostructure. CeO2 plays a dual role in improving photocatalytic activity, not only by promoting the separation and transfer of photogenerated charge carriers, but also by increasing visible light absorption of the photocatalyst as a photosensitizer. The as-prepared CeO2@TiO2 heterostructure demonstrates the performance of organic degradation and H2 production (about 17 μmol/h/g, which is about 2.5 times higher than that of pure TiO2 nanobelts). Our work provides a facile and controllable synthesis method for high performance photocatalyst, which will have potential applications in synthesis clean/solar fuel, and photocatalytic water treatment.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 985 ◽  
Author(s):  
Yidong Liu ◽  
Lingfeng Jian ◽  
Tianhua Xiao ◽  
Rongtao Liu ◽  
Shun Yi ◽  
...  

CO2 has been regarded as one of the most promising blowing agents for polystyrene (PS) foam due to its non-flammability, low price, nontoxicity, and eco-friendliness. However, the low solubility and fast diffusivity of CO2 in PS hinder its potential applications. In this study, an attapulgite (ATP)/polypyrrole (PPy) nanocomposite was developed using the in situ polymerization method to generate the hierarchical cell texture for the PS foam based on the supercritical CO2 foaming. The results demonstrated that the nanocomposite could act as an efficient CO2 capturer enabling the random release of it during the foaming process. In contrast to the pure PS foam, the ATP/PPy nanocomposite reinforced PS foam is endowed with high cell density (up to 1.9 × 106) and similar thermal conductivity as the neat PS foam, as well as high compression modulus. Therefore, the in situ polymerized ATP/PPy nanocomposite makes supercritical CO2 foaming desired candidate to replace the widely used fluorocarbons and chlorofluorocarbons as PS blowing agents.


Sign in / Sign up

Export Citation Format

Share Document