scholarly journals Semi-automatic system for non-invasive diagnosis of bronchial asthma based on microwave technologies

2019 ◽  
Vol 30 ◽  
pp. 13003
Author(s):  
Ivan V. Sememik ◽  
Alexander V. Dem’yanenko ◽  
Feruz S. Topalov

In this paper, the structure of a semi-automatic non-invasive harmless diagnostic system for bronchial asthma and other bronchopulmonary diseases are discussed. The components of the diagnostic system are discussed. It is shown that it is possible to design a diagnostic system in a portable compact design by using a laser displacement sensor instead of a bulky positioning system. The advantages of the proposed system are the simplicity of the implementation of the diagnostic system and examination, harmlessness, non-invasiveness of the examination procedure, no need to perform breathing maneuvers. These advantages allow us to consider the proposed system as an addition to the existing methods of diagnosing bronchial asthma, as well as an express method for diagnosing bronchopulmonary diseases or a system for periodically monitoring the health of a patient undergoing inpatient treatment or not having permanent access to a large medical center equipped with expensive equipment.

Author(s):  
Eric B. Halfmann ◽  
C. Steve Suh ◽  
N. P. Hung

The workpiece and tool vibrations in a lathe are experimentally studied to establish improved understanding of cutting dynamics that would support efforts in exceeding the current limits of the turning process. A Keyence laser displacement sensor is employed to monitor the workpiece and tool vibrations during chatter-free and chatter cutting. A procedure is developed that utilizes instantaneous frequency (IF) to identify the modes related to measurement noise and those innate of the cutting process. Instantaneous frequency is shown to thoroughly characterize the underlying turning dynamics and identify the exact moment in time when chatter fully developed. That IF provides the needed resolution for identifying the onset of chatter suggests that the stability of the process should be monitored in the time-frequency domain to effectively detect and characterize machining instability. It is determined that for the cutting tests performed chatters of the workpiece and tool are associated with the changing of the spectral components and more specifically period-doubling bifurcation. The analysis presented provides a view of the underlying dynamics of the lathe process which has not been experimentally observed before.


2012 ◽  
Vol 184-185 ◽  
pp. 701-706
Author(s):  
Ming Xing Qiu ◽  
Chuang Shao ◽  
Yong Zhou ◽  
Li Hua Yue

In order to determine the fatigue limits of two kinds of titanium alloy pipes connected by welding and rolling, fatigue tests were carried out by the Aero-Criterion which gives vibration fatigue test method and failure criteria. A laser-displacement-sensor was used at the free end and a strain-gauge at the root of the pipe specimen. The test result shows that the fatigue limit of the welded pipe is higher than the rolled one. In the end some new findings are listed according to the test.


2013 ◽  
Vol 677 ◽  
pp. 384-387 ◽  
Author(s):  
Wai Kei Ricky Kot ◽  
Luen Chow Chan

In this paper, a visualisation system will be discussed that can be used to capture the deformation profile of the sheet blank during sheet metal forming processes, such as deep drawing and shape forming. The visualisation system utilizes a 2D laser displacement sensor for deformation profile acquisition. The sensor is embedded in the die and the laser propagates through the die to detect the profile change of the specimen concealed in the die during operation. The captured profile data will be collected, manipulated and transferred to a monitor for display via a controller. This visualisation of the deformation profile will provide engineers and researchers with an intuitive means of analysing and diagnosing the deformation process during sheet metal forming.


1999 ◽  
Author(s):  
Masatake Shiraishi ◽  
Gongjun Yang

Abstract A laser displacement sensor which has a resolution of 0.5 μm was used to determine the measurement of a curved workpiece profile in turning. This sensor is attached to a specially designed stage and is operated by three motors which are controlled by a fuzzy control algorithm. The experimental results show that the measuring system can be applied to workpieces having inclination angles of up to around 45°. The proposed measuring system has a practical measuring accuracy to within ten micrometers.


Author(s):  
Christopher A. Lerch ◽  
Richard H. Lyon

Abstract A method termed harmonic tracking is developed to recover time dependent gear motion from machine casing vibration. The harmonic tracking method uses short-time spectral generation and a subsequent set of algorithms to locate and track gear meshing frequencies as functions of time. The meshing frequencies are then integrated with respect to time to obtain the rotation of individual gears. More specifically, spectral generation is performed using the discrete Fourier transform, and the locating and tracking algorithms involve locating tones in each short-time spectrum and tracking them through successive spectra to recover gear meshing harmonics. The harmonic tracking method is found to be more robust than demodulation-based methods in the presence of measurement noise and signal distortion from the structural transfer function between gears and the casing. The harmonic tracking method is tested, both through simulation and experiments involving motor-operated valves (MOV’s) as part of the development of a diagnostic system for MOV’s. In all cases, the harmonic tracking method is found to recover gear motion with sufficient accuracy to perform diagnostics. The harmonic tracking method should be generally applicable to situations in which a non-invasive technique is required for determining the time-dependent angular speeds and displacements of gearbox input, intermediary, and output shafts.


2018 ◽  
Vol 103 (9) ◽  
pp. 1296-1300 ◽  
Author(s):  
Fahriye Groen-Hakan ◽  
Laura Eurelings ◽  
Aniki Rothova ◽  
Jan van Laar

Background/aimsThe diagnostic properties of conventional diagnostic tests (ACE and chest radiography) for sarcoidosis-associated uveitis are not ideal. The diagnostic value of lymphopaenia for sarcoidosis-associated uveitis is investigated.MethodsA retrospective study of 191 consecutive patients with a first uveitis episode visiting the ophthalmology department (Erasmus Medical Center, Rotterdam, The Netherlands). Receiver operating characteristics (ROC) analysis was performed and compared with known ROC values from literature of conventional diagnostic tests for sarcoidosis-associated uveitis. An ideal cut-off was determined for lymphopaenia by calculation of the highest Youden index.ResultsOut of all patients with first uveitis attack, 32/191 or 17% were subsequently diagnosed with biopsy-proven or radiological diagnosis of sarcoidosis. Lymphopaenia (<1.5×109/L) was significantly more often observed in patients with sarcoidosis-associated uveitis compared with patients with non-sarcoidosis-associated uveitis (p<0.05). The sensitivity and specificity of lymphopaenia was 75 % and 77 %, respectively. The optimal cut-off for lymphopaenia for diagnosing sarcoidosis-associated uveitis was 1.47 ×109/L. Lymphopaenia resulted in a 12.0 (95% CI 4.7 to 30.5 fold risk for having sarcoidosis, corrected for sex, race and age at onset of uveitis in patients with a first uveitis attack.ConclusionLymphopaenia is a non-invasive and useful marker for diagnosing sarcoidosis-associated uveitis.


Children ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 1035
Author(s):  
Rachel K. Marlow ◽  
Sydney Brouillette ◽  
Vannessa Williams ◽  
Ariann Lenihan ◽  
Nichole Nemec ◽  
...  

The American Academy of Pediatrics (AAP) recommends supportive care for the management of bronchiolitis. However, patients admitted to the intensive care unit with severe (critical) bronchiolitis define a unique group with varying needs for both non-invasive and invasive respiratory support. Currently, no guidance exists to help clinicians discern who will progress to invasive mechanical support. Here, we sought to identify key clinical features that distinguish pediatric patients with critical bronchiolitis requiring invasive mechanical ventilation from those that did not. We conducted a retrospective cohort study at a tertiary pediatric medical center. Children ≤2 years old admitted to the pediatric intensive care unit (PICU) from January 2015 to December 2019 with acute bronchiolitis were studied. Patients were divided into non-invasive respiratory support (NRS) and invasive mechanical ventilation (IMV) groups; the IMV group was further subdivided depending on timing of intubation relative to PICU admission. Of the 573 qualifying patients, 133 (23%) required invasive mechanical ventilation. Median age and weight were lower in the IMV group, while incidence of prematurity and pre-existing neurologic or genetic conditions were higher compared to the NRS group. Multi-microbial pneumonias were diagnosed more commonly in the IMV group, in turn associated with higher severity of illness scores, longer PICU lengths of stay, and more antibiotic usage. Within the IMV group, those intubated earlier had a shorter duration of mechanical ventilation and PICU length of stay, associated with lower pathogen load and, in turn, shorter antibiotic duration. Taken together, our data reveal that critically ill patients with bronchiolitis who require mechanical ventilation possess high risk features, including younger age, history of prematurity, neurologic or genetic co-morbidities, and a propensity for multi-microbial infections.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 271
Author(s):  
Bo Wen ◽  
Sho Sekine ◽  
Shinichi Osawa ◽  
Yuki Shimizu ◽  
Hiraku Matsukuma ◽  
...  

This paper describes a comparison of the mechanical structures (a double-sided beam and a cantilever beam) of a probe in a tool edge profiler for the measurement of a micro-cutting tool. The tool edge profiler consists of a positioning unit having a pair of one-axis DC servo motor stages and a probe unit having a laser displacement sensor and a probe composed of a stylus and a mechanical beam; on-machine measurement of a tool cutting edge can be conducted with a low contact force through measuring the deformation of the probe by the laser displacement sensor while monitoring the tool position. Meanwhile, the mechanical structure of the probe could affect the performance of measurement of the edge profile of a precision cutting tool. In this paper, the measurement principle of the tool edge profile is firstly introduced; after that, slopes and a top-flat of a cutting tool sample are measured by using a cantilever-type probe and a double-sided beam-type probe, respectively. The measurement performances of the two probes are compared through experiments and theoretical measurement uncertainty analysis.


2020 ◽  
Vol 8 (4) ◽  
pp. 383-392
Author(s):  
О.К. Koloskova ◽  
Т.М. Bilous ◽  
N.O. Shevchenko ◽  
V.V. Bilous

Despite the large number of studies on the diagnosis and treatment of asthma and the constant updating of recommendations for the provision of medical care to patients with asthma, this disease still has a significant impact on the quality of life of patients and their families and significant economic losses. However, the peculiarities of bronchial asthma and the diagnosis of certain phenotypes of the disease in children, depending on biomarkers of inflammatory activity in the airways, require greater use of non-invasive diagnostic procedures and optimization of individualized treatment depending on the nature and intensity of inflammation in the respiratory tract.


Sign in / Sign up

Export Citation Format

Share Document