IMAGING GAS ADSORPTION IN THE FIELD ION MICROSCOPE : DEPENDENCE IN TIP FIELD STRENGTH AND TIP TEMPERATURE

1988 ◽  
Vol 49 (C6) ◽  
pp. C6-99-C6-104
Author(s):  
C. M.C. de CASTILHO ◽  
D. R. KINGHAM
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Keith J. Fraser ◽  
John J. Boland

Imaging and evaporation of atoms in the field ion microscope (FIM) has been modelled by using finite difference methods to calculate the voltage distribution around a tip and hence the electric field strength experienced by individual atoms. Atoms are evaporated based on field strength using a number of different mathematical models which yield broadly similar results. The tip shapes and simulated FIM images produced show strong agreement with experimental results for tips of the same orientation and crystal structure. Calculations have also been made to estimate the effects on resolution of using a field-sharpened tip for scanning probe microscopy.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


Author(s):  
O. T. Inal ◽  
L. E. Murr

When sharp metal filaments of W, Fe, Nb or Ta are observed in the field-ion microscope (FIM), their appearance is differentiated primarily by variations in regional brightness. This regional brightness, particularly prominent at liquid nitrogen temperature has been attributed in the main to chemical specificity which manifests itself in a paricular array of surface-atom electron-orbital configurations.Recently, anomalous image brightness and streaks in both fcc and bee materials observed in the FIM have been shown to be the result of surface asperities and related topographic features which arise by the unsystematic etching of the emission-tip end forms.


Author(s):  
Richard L. McConville

A second generation twin lens has been developed. This symmetrical lens with a wider bore, yet superior values of chromatic and spherical aberration for a given focal length, retains both eucentric ± 60° tilt movement and 20°x ray detector take-off angle at 90° to the tilt axis. Adjust able tilt axis height, as well as specimen height, now ensures almost invariant objective lens strengths for both TEM (parallel beam conditions) and STEM or nano probe (focused small probe) modes.These modes are selected through use of an auxiliary lens situ ated above the objective. When this lens is on the specimen is illuminated with a parallel beam of electrons, and when it is off the specimen is illuminated with a focused probe of dimensions governed by the excitation of the condenser 1 lens. Thus TEM/STEM operation is controlled by a lens which is independent of the objective lens field strength.


Author(s):  
Gert Ehrlich

The field ion microscope, devised by Erwin Muller in the 1950's, was the first instrument to depict the structure of surfaces in atomic detail. An FIM image of a (111) plane of tungsten (Fig.l) is typical of what can be done by this microscope: for this small plane, every atom, at a separation of 4.48Å from its neighbors in the plane, is revealed. The image of the plane is highly enlarged, as it is projected on a phosphor screen with a radius of curvature more than a million times that of the sample. Müller achieved the resolution necessary to reveal individual atoms by imaging with ions, accommodated to the object at a low temperature. The ions are created at the sample surface by ionization of an inert image gas (usually helium), present at a low pressure (< 1 mTorr). at fields on the order of 4V/Å.


Author(s):  
A. Legrouri

The industrial importance of metal catalysts supported on reducible oxides has stimulated considerable interest during the last few years. This presentation reports on the study of the physicochemical properties of metallic rhodium supported on vanadium pentoxide (Rh/V2O5). Electron optical methods, in conjunction with other techniques, were used to characterise the catalyst before its use in the hydrogenolysis of butane; a reaction for which Rh metal is known to be among the most active catalysts.V2O5 powder was prepared by thermal decomposition of high purity ammonium metavanadate in air at 400 °C for 2 hours. Previous studies of the microstructure of this compound, by HREM, SEM and gas adsorption, showed it to be non— porous with a very low surface area of 6m2/g3. The metal loading of the catalyst used was lwt%Rh on V2Q5. It was prepared by wet impregnating the support with an aqueous solution of RhCI3.3H2O.


Author(s):  
J. J. Hren ◽  
S. D. Walck

The field ion microscope (FIM) has had the ability to routinely image the surface atoms of metals since Mueller perfected it in 1956. Since 1967, the TOF Atom Probe has had single atom sensitivity in conjunction with the FIM. “Why then hasn't the FIM enjoyed the success of the electron microscope?” The answer is closely related to the evolution of FIM/Atom Probe techniques and the available technology. This paper will review this evolution from Mueller's early discoveries, to the development of a viable commercial instrument. It will touch upon some important contributions of individuals and groups, but will not attempt to be all inclusive. Variations in instrumentation that define the class of problems for which the FIM/AP is uniquely suited and those for which it is not will be described. The influence of high electric fields inherent to the technique on the specimens studied will also be discussed. The specimen geometry as it relates to preparation, statistical sampling and compatibility with the TEM will be examined.


Author(s):  
W. Engel ◽  
M. Kordesch ◽  
A. M. Bradshaw ◽  
E. Zeitler

Photoelectron microscopy is as old as electron microscopy itself. Electrons liberated from the object surface by photons are utilized to form an image that is a map of the object's emissivity. This physical property is a function of many parameters, some depending on the physical features of the objects and others on the conditions of the instrument rendering the image.The electron-optical situation is tricky, since the lateral resolution increases with the electric field strength at the object's surface. This, in turn, leads to small distances between the electrodes, restricting the photon flux that should be high for the sake of resolution.The electron-optical development came to fruition in the sixties. Figure 1a shows a typical photoelectron image of a polycrystalline tantalum sample irradiated by the UV light of a high-pressure mercury lamp.


Author(s):  
G. L. Kellogg ◽  
P. R. Schwoebel

Although no longer unique in its ability to resolve individual single atoms on surfaces, the field ion microscope remains a powerful tool for the quantitative characterization of atomic processes on single-crystal surfaces. Investigations of single-atom surface diffusion, adatom-adatom interactions, surface reconstructions, cluster nucleation and growth, and a variety of surface chemical reactions have provided new insights to the atomic nature of surfaces. Moreover, the ability to determine the chemical identity of selected atoms seen in the field ion microscope image by atom-probe mass spectroscopy has increased or even changed our understanding of solid-state-reaction processes such as ordering, clustering, precipitation and segregation in alloys. This presentation focuses on the operational principles of the field-ion microscope and atom-probe mass spectrometer and some very recent applications of the field ion microscope to the nucleation and growth of metal clusters on metal surfaces.The structure assumed by clusters of atoms on a single-crystal surface yields fundamental information on the adatom-adatom interactions important in crystal growth. It was discovered in previous investigations with the field ion microscope that, contrary to intuition, the initial structure of clusters of Pt, Pd, Ir and Ni atoms on W(110) is a linear chain oriented in the <111> direction of the substrate.


Sign in / Sign up

Export Citation Format

Share Document