scholarly journals Application areas of phosphogypsum in production of mineral binders and composites based on them: a review of research results

2018 ◽  
Vol 149 ◽  
pp. 01012 ◽  
Author(s):  
Leonid Dvorkin ◽  
Nataliya Lushnikova ◽  
Mohammed Sonebi

The increase of the consumption of gypsum products in construction industry with a limited amount of natural gypsum deposits requires alternative sources of gypsum-containing raw materials. In some countries which have fertilizers industry plants, the problem can be solved using industrial wastes, e.g. phosphorgypsum – a byproduct of fertilizers’ production. Kept in dumps over decades, phosphorgypsum is subjected to the chemical changes due to washing out impurities with rain and other natural factors. However, there are observed deviations of harmful impurities in dumped PG depending on its age., Phosphorgypsum of any age requires chemical treatment to neutralize remains of phosphorus and sulfuric acids, fluorine compounds. According to our researches one of the most simple and effective method of neutralization the impurities is using lime-containing admixtures. The paper presents results of laboratory tests of phosphorgypsum as a component of clinker and non-clinker binders. There were investigated the impact of phosphorgypsum as admixture for clinker binders to substitute natural gypsum. Neutralized phosphorgypsum can be applied as mineralizing admixture in calcination of Portland cement clinker. Adding 2 to 2.5% of phosphorgypsum as setting time regulator resulted in a similar physical and mechanical properties compared to mix made with natural gypsum. Another important area of phosphorgypsum application is sulphate activatoion of low-clinker blast-furnace slag cement (clinker content is less than 19%). According to results, the incorporation of phosphorgypsum as sulphate activator in cement has the better effect as natural gypsum. Other development has been carried out to modify the phosphorgypsum binder properties. Complex additive consisted of polycarboxylate-based superplasticizer and slaked lime permitted an increase mechanical properties of hardened phosphorgypsum binder due to significant a reduction of water consumption. Such modified binder can be used as partial or complete replacement of gypsum binder for filling cements and finishing plasters. It can substitute gypsum in non-clinker binders like supersulphated cements. There were also developed compositions of supersulphated cements based on low-alumina blast furnace slag and phosphorgypsum. Supersulphated cements were tested in normal-weight and light-weight concrete.

2019 ◽  
Vol 7 (1) ◽  
pp. 126-136
Author(s):  
Hakan Çağlar ◽  
Arzu Çağlar

In this study, it is aimed to make improvements on blended brick (1) which is the first building material has a history of at least 10,000 years. To the blended brick which is a traditional material was kept constant at 5% the addition of fly ash which is industrial waste. It was aim of determine of the effect on the physical and mechanical properties of the blended brick using different ratios (5%, 10%, 15% and 20%) blast furnace slag. In the first stage, the production of fly ash-based blast furnace slag doped sample of blended brick was performed. In the second stage, a variety of experiments were applied to determine the physical and mechanical properties of the blended brick sample. As a result; It has been determined that unit volume weight and compressive strength decreases with the use of industrial wastes in blended brick production. They have occured an increase in porosity and capillary water absorption values. The use of industrial wastes in the production of blended bricks will contribute both improve the properties of the bricks and   the reduction of wastes left to the environment.


Buildings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 443
Author(s):  
Selma Bellara ◽  
Mustapha Hidjeb ◽  
Walid Maherzi ◽  
Salim Mezazigh ◽  
Ahmed Senouci

This study investigated the potential use of Zerdezas dam Calcined Sediments (CS) and El-Hadjar Blast Furnace Slag (GGBS) from northern Algeria as a partial replacement of cement (C) in normal hardening hydraulic road binders. Two binder mix designs were optimized using a Response Surface Methodology (RSM). The first mix, 50C35GGBS15CS, consisted of 50% cement, 35% blast furnace slag, and 15% calcined sediment. The second mix, 80C10GGBS10CS, consisted of 80% cement, 10% blast furnace slag, and 10% calcined sediments. The tests of workability, setting time, volume expansion, compressive and flexural strengths, porosity, and SEM were conducted to ensure that both mixes meet the standard requirements for road construction binders. The two proposed mixes were qualified as normal hardening hydraulic road binder. The reuse of the sediments will contribute to a better disposal of dam sediments and steel industry waste and to preserve natural resources that are used for manufacturing cement. It will also contribute to the environmental impact reduction of cement clinker production by reducing greenhouse gas emissions.


2021 ◽  
Vol 30 ◽  
pp. 30-35
Author(s):  
Jan Horych ◽  
Pavel Tesárek ◽  
Zdeněk Prošek

The usage of waste materials is a very important global topic. The large amount of waste everywhere in the world needs to be processed or disposed. Landfilling is not an option anymore, because of European legislation and restrictions. A lot of studies are trying to develop new options or possibilities of using waste materials. This research is trying to find a way to process blast furnace slag. A high-speed mill was used for the mechanical activation. Chemical activation was used as the next step of activation. There are many materials that could be used, but in this study we used slaked lime and water-glass. Slaked lime had a positive effect on mechanical properties. Samples had higher compressive strength but the effect was limited only for 5 wt. %. Another used material was water-glass, but in this case, there was a significant negative effect. Compressive strength and flexural strength were significantly reduced.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 41
Author(s):  
Nadezda Stevulova ◽  
Julius Strigac ◽  
Jozef Junak ◽  
Eva Terpakova ◽  
Marian Holub

This article describes utilization of a cement kiln bypass dust utilization as an added component in a hydraulic road binder. Three experimental binder mixes (BM1–BM3) with variation in the composition of the main constituents (cement clinker, ground limestone and ground granulated blast furnace slag) and constant content of bypass dust (10%) were prepared under laboratory conditions. The properties of binder constituents, fresh experimental binder mixes and hardened specimens were tested according to STN EN 13282-2 for a normal hardening hydraulic road binder. The physical and chemical properties of all binder mixes (fineness: +90 µm ≤ 15 wt.%; SO3 content: <4 wt.%) met the standard requirements. The bypass dust addition led to an increase in the water content for standard consistency of cement mixes (w/c = 0.23) and to a shortening of the initial setting time for two experimental blended cement pastes (BM1 and BM3) compared with the value required by the standard. Only BM2 with the lowest SO3 content (0.363 wt.%) and the highest percentage of granulated blast furnace slag (9.5 wt.%) and alkalis (Na2O and K2O content of 5.9 wt.%) in the binder mix met the standard value for the initial setting time (≥150 min). The results of compressive strength testing of experimental specimens after 56 days of hardening (59.2–63.9 MPa) indicate higher values than the upper limit of the standard requirement for the N4 class (≥32.5; ≤52.5 MPa).


2014 ◽  
Vol 638-640 ◽  
pp. 1453-1459
Author(s):  
Zhi Jiang Lv ◽  
Zong Shou Lin ◽  
Hao Jie Wang

Over-sulfur phosphogypsum(PG)–ground granulate blast-furnace slag(GGBFS) cement paste is utilized by GGBFS, Portland cement clinker(PCC), additive, water and modificated phosphogypsum paste(MPG), produced by milling PG mixed with a certain proportion of steel slag(SS), GGBFS and water. The effect of PG on the properties of over-sulfur PG– GGBFS cement was investigated. The mechanical performances and hydration mechanism of the cement with different kinds, proportions and particle size of PG were analyzed based on setting time, volume stability, strength test, XRD and SEM analyses. The experimental results show that,the optimum mixture of PG amount in the binder was 45%. Overdose of PG may caused strength deterioration. The optimum grinding time of MPG in the binder was 20min. The soluble phosphorus content of PG in the binder was under 0.05%.


2018 ◽  
Vol 1148 ◽  
pp. 29-36
Author(s):  
G. Siva Karuna ◽  
S.Venu Gopala Swamy ◽  
G. Swami Naidu

In the present days, hybrid metal matrix composites exhibit the better mechanical properties when compared with the uni-reinforced metal matrix composites. Due the light weight and improved mechanical properties these materials find the better applications in the area of aerospace and automobiles. The present investigation aims to evaluate the mechanical properties of Aluminum 2024 T351 reinforced with Blast Furnace Slag and Red Mud. Composites with industrial wastes like blast furnace slag and red mud as reinforcements are likely to overcome the cost barrier for wide spread applications. Blast Furnace Slag particulates are reinforced in AA2024 by decreasing 4 to 1% by weight. Red Mud particulates are reinforced in AA2024 by increasing 1 to 4% by weight. The composites are synthesized by using the stir casting technique. The mechanical properties are optimized for the composite with 2% Blast furnace slag and 3% Red Mud. Micro structural studies carried out using SEM, reveals the uniform distribution of the reinforcement in the matrix phase.


2017 ◽  
pp. 80-85
Author(s):  
V. P. Ovchinnikov ◽  
O. V. Rozhkova ◽  
N. A. Aksenova ◽  
P. V. Ovchinnikov

In the article studies of oil-filled compositions with the addition of blast-furnace slag for strength at elevated temperatures are presented. The rheological parameters of the slag cement slag cement mortar, as well as the setting time, were studied. Conclusions are drawn about the prospects of further study of slag cementcontaining compositions.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 382 ◽  
Author(s):  
Danying Gao ◽  
Zhenqing Zhang ◽  
Yang Meng ◽  
Jiyu Tang ◽  
Lin Yang

This work aims to investigate the effect of additional flue gas desulfurization gypsum (FGDG) on the properties of calcium sulfoaluminate cement (CSAC) blended with ground granulated blast furnace slag (GGBFS). The hydration rate, setting time, mechanical strength, pore structure and hydration products of the CSAC-GGBFS mixture containing FGDG were investigated systematically. The results show that the addition of FGDG promotes the hydration of the CSAC-GGBFS mixture and improves its mechanical strength; however, the FGDG content should not exceed 6%.


Sign in / Sign up

Export Citation Format

Share Document