scholarly journals Design and Analysis of Collapsible Scissor Bridge

2018 ◽  
Vol 152 ◽  
pp. 02013 ◽  
Author(s):  
Mohamad Nabil Aklif Biro ◽  
Noor Zafirah Abu Bakar

Collapsible scissor bridge is a portable bridge that can be deployed during emergency state to access remote areas that are affected by disaster such as flood. The objective of this research is to design a collapsible scissor bridge which is able to be transported by a 4x4 vehicle and to be deployed to connect remote areas. The design is done by using Solidworks and numerical analysis for structural strength is conducted via ANSYS. The research starts with parameters setting and modelling. Finite element analysis is conducted to analyze the strength by determining the safety factor of the bridge. Kutzbach equation is also analyzed to ensure that the mechanism is able to meet the targeted degree of motion. There are five major components of the scissor structure; pin, deck, cross shaft and deck shaft. The structure is controlled by hydraulic pump driven by a motor for the motions. Material used in simulation is A36 structural steel due to limited library in ANSYS. However, the proposed material is Fiber Reinforced Polymer (FRP) composites as they have a high strength to weight ratio. FRP also tends to be corrosion resistance and this characteristic is useful in flooded area.

2013 ◽  
Vol 339 ◽  
pp. 687-690 ◽  
Author(s):  
Jian Shi ◽  
Jun Kato ◽  
Li Min Bao ◽  
Kiyoshi Kemmochi

Fiber Reinforced Polymer (FRP) composites are used in many applications for their excellent strength-to-weight ratio. These properties are significant barriers for achieving the 3R concept (Recycle, Reuse, and Reduce). Inverse manufacturing is a recent technology that produces new materials and industrial goods from FRP waste based on life-cycle assessment (LCA), and it is expected to help solve the problems of 3R associated with FRP [1-. However, no effective recycling system of FRP has been established because of the cross-linked structure of thermosetting resin matrix and inorganic reinforcement fibers. To investigate the possibility of recycling and reusing both matrix and reinforcements, a project of preventing environmental deterioration was performed. In this study, a new decomposition method for recycling FRP waste by superheated steam was developed. Separation of the resin matrix and reinforcement fiber from the FRP was attempted, the FRP recycled from the separated fibers was remolded; this is called R-FRP.


2021 ◽  
Vol 11 (7) ◽  
pp. 2900
Author(s):  
In-Kyu Kang ◽  
Sun-Hee Kim

In this study, an experiment on compressive strength of the hybrid concrete-filled fiber-reinforced polymer (FRP) tube (CFFT) confined by filament winding was conducted to improve the longitudinal strength while considering the thickness of filament winding as a variable. A maximum error of 17% was observed when the results of performing the finite element analysis (FEA) by applying the mechanical properties of the fiber-reinforced polymer (FRP) materials suggested in previous studies were compared to those of the compressive strength experiment on the hybrid-CFFT. Moreover, a maximum error of 15% was exhibited when the results derived from the strength equation proposed by analyzing the compressive strength experiment were compared. Furthermore, the compressive strength of the hybrid-CFFT increased by up to 14% when the longitudinal compressive strength of the pre-tensioned spun high strength concrete (PHC) pile and concrete-filled tube (CFT) were compared.


2021 ◽  
Vol 13 (3) ◽  
pp. 107-111
Author(s):  
Manova MOSES ◽  
Guruprasaath SURESH

The purpose of this article is to reduce the structural weight and drag of an unmanned aerial vehicle (UAV) or drone while increasing its endurance. To achieve a high strength to weight ratio, Finite Element Analysis is used to study the structural strength characteristics of UAV frames. A computational fluid dynamic analysis (CFD) is performed for different angles of attack and vehicle speeds to estimate the drag coefficient using the k-e turbulence model. The analysis results show that the designed UAV vehicle has excellent performance characteristics and stability at 5° AoA and 3 m/sec. This article outlines the overall design of the unmanned aerial vehicle, which was created using the CATIA V6 platform. COMSOL 5.6 software is used for structural and CFD analysis.


2021 ◽  
Author(s):  
Baisheng Zhang ◽  
Hongchao Zhao

Abstract With the depletion of shallow resources, the drawbacks of conventional bolting system in sustaining the integrity of the roadway have drawn much attention. Developing the innovative secondary standing support is therefore to be urgent. This paper presents a hybrid tubular standing support, which consists of an exterior container made of PVC and fibre-reinforced polymer (FRP) composites and the infill material made of coal rejects and high flowable cementitious grout material. Compared with other marketable standing support, the combination application of the large rupture strain PVC tube and the FRP composite with high strength-to-weight ratio can provide the effective confinement to infill material, which may result in the strain hardening behaviour. The use of coal reject to generate the backfill material is believed to be effective and thus is attractive from the design aspect. To verify these mentioned advantages, a series of compression tests were conducted on this FRP-PVC tubular standing support (FPTSS) with different thickness of the FRP jacket. In addition, the compression tests were also conducted to investigate the compressive behaviour of FRP tubular standing support (FTSS) and PVC tubular standing support (PTSS). Test results indicated that the combination of FRP and PVC composite achieve the superior behaviour either in terms of the compressive strength or the deformation ability.


2017 ◽  
Vol 747 ◽  
pp. 342-349 ◽  
Author(s):  
Mattia Santandrea ◽  
Giovanni Quartarone ◽  
Christian Carloni ◽  
Xiang Lin Gu

The rehabilitation of existing masonry elements by means of jacketing of columns using composite materials is becoming a remarkable technique in several applications that aim to increase the strength of existing masonry buildings. Fiber reinforced cementitious matrix (FRCM) composites are a newly developed strengthening system that consist of high-strength fibers embedded in a cementitious grout and externally bonded to the substrate. High resistance to fire and high temperatures, ease of handling during application, and vapor permeability with the substrate are some of the characteristics that make FRCMs a promising alternative to traditional organic composites such as fiber reinforced polymer (FRP) composites. This work presents the results of an experimental study carried out to understand the behavior of masonry columns with a square cross-section confined by steel and basalt fiber sheets embedded in a mortar matrix subjected to monotonic concentric compressive load. The effectiveness of the confinement is studied in terms of load-bearing capacity with respect to unconfined columns. The effect of corner radius for columns confined with basalt fibers is investigated.


2014 ◽  
Vol 21 (4) ◽  
pp. 607-614 ◽  
Author(s):  
Ali A. Mortazavi ◽  
Mostafa Jalal

AbstractFiber reinforced polymer (FRP) composites have found increasingly wide applications in engineering due to their high strength-to-weight ratio and high corrosion resistance. One important application of FRP composites is as a confining material for concrete, which can enhance both the compressive strength and the ultimate axial strain of concrete. With this respect, the stress-strain behavior of FRP-confined concrete, under both monotonic and cyclic compression, needs to be properly understood and modeled. This paper presents details of an experimental work carried out on concrete cylinders wrapped with FRP materials and subjected to both monotonic and cyclic loading. A total number of 12 FRP confined concrete specimens and 10 control specimens with a diameter of 100 mm and a height of 200 mm were cast and cured under the same conditions, and two FRP materials (carbon fibers (CFRP) and glass fibers (GFRP)) were used for the construction of the FRP jackets. The effect of the type of confinement material, reinforcement ratio based on the jacket stiffness, and type of loading is examined. A model that predicts the behavior of confined concrete, which takes into account the stiffness and effectiveness of different confinement materials is also briefly introduced.


2019 ◽  
Vol 8 (2) ◽  
pp. 2478-2484

Due to the distinctive advantages such as high strength to weight ratio, high resistance to corrosion and chemical attacks, fiber reinforced polymer (FRP) sheets are widely used for strengthening and repairing of existing steel structures. In last two decades, study has been carried out over the use of FRP for strengthening and repairing of concrete structures. More recently, the use of FRP to strengthen existing steel structures has received much attention. Strengthening and retrofitting is necessary for steel structure after some time because durability and capacity of steel structure get reduced over the time .Conventional strengthening method such as welding of additional steel plate to existing structure result in increase in dead load , also it will undergo corrosion if strengthen structure is placed in corrosive environment. Use of FRP for strengthening and retrofitting of steel structure will be the excellent solution for these disadvantages. The main aim of this paper is to study the flexural behavior of artificially degraded steel I section externally bonded with GFRP, BFRP, and CFRP


2017 ◽  
Vol 747 ◽  
pp. 390-397 ◽  
Author(s):  
Jaime Gonzalez-Libreros ◽  
Tommaso D'Antino ◽  
Carlo Pellegrino

The use of Fiber Reinforced Polymer (FRP) composites has become a popular solution for retrofitting and strengthening of existing concrete and masonry structures. However, some drawbacks of this technique, mainly associated with the use of organic resins, have been reported. To overcome such drawbacks, the development of composite materials in which the organic resins are replaced with inorganic matrices has recently caught the attention of the civil engineering industry. Among these newly developed systems, Fiber Reinforced Cementitious Matrix (FRCM) composites, which are comprised of high strength fibers embedded within an inorganic matrix, have shown promising results. However, research on this topic is still limited and important aspects, such as the bond behavior between the composite and the substrate, are not fully understood and require further study. This paper presents the results of an experimental campaign aimed at investigating the influence of the type of matrix and substrate on the bond behavior of FRCM composites. Glass-FRCM composite strips were applied onto concrete and masonry substrates and then tested by means of a classical push-pull single-lap direct-shear test set-up. A cementitious and a lime-based matrix were employed to apply the same type of fiber on concrete and masonry substrates, respectively. FRCM-concrete and FRCM-masonry joints reported the same failure mode. However, higher values of the peak load were obtained for the lime-based glass-FRCM composite applied onto masonry substrates than with the cementitious glass-FRCM composite applied onto concrete substrates.


Author(s):  
Andrew John Wit ◽  
◽  
Simon Kim ◽  

The recent introduction of carbon fiber reinforced polymer (CFRP) based simulation tools and robotic fabrication has opened potentials in not only design, but also in full-scale testing in architectural applications. CFRP’s unique properties such as high strength to weight ratio, malleability during fabrication as well as the capacity to create complex yet precise forms while minimizing waste through reconfigurable formworks allow for a high-level of precision and adaptability in architectural applications that traditional construction methodologies cannot afford.


2021 ◽  
Vol 11 (1) ◽  
pp. 384
Author(s):  
Jeong Hwan Lee ◽  
Jun Cong Ge ◽  
Jun Hee Song

As contemporary emerging materials, fiber-reinforced plastics/polymers (FRP) are widely used in aerospace automotive industries and in other fields due to their high strength-to-weight ratio, high stiffness-to-weight ratio, high corrosion resistance, low thermal expansion and other properties. Drilling is the most frequently used process in industrial operation for polymer composite laminates, owing to the need for joining structures. However, it is a great challenge for operators to drill holes in FRP materials, due to the non-homogenous and anisotropic properties of fibers. Various damages, such as delamination, hole shrinkage, and burr and tool wear, occur due to the heterogeneous and anisotropic nature of composite laminates. Therefore, in this study, carbon fiber reinforced polymer (CFRP)/aramid fiber reinforced polymer (AFRP) hybrid composites (C-AFRP) were successfully synthesized, and their drilling characteristics, including burr generation and tool wear, were also mainly investigated. The drilling characteristics of CFRP and C-AFRP were compared and analyzed for the first time under the same operating conditions (cutting tool, spindle speed, feed rate). The experimental results demonstrated that C-AFRP had higher tensile strength and good drilling characteristics (low thrust and less tool wear) compared with CFRP. As a lightweight and high-strength structural material, C-AFRP hybrid composites have great potential applications in the automobile and aerospace industries after the slight processing of burrs generated during drilling.


Sign in / Sign up

Export Citation Format

Share Document