scholarly journals Compressive Strength Testing of Hybrid Concrete-Filled Fiber-Reinforced Plastic Tubes Confined by Filament Winding

2021 ◽  
Vol 11 (7) ◽  
pp. 2900
Author(s):  
In-Kyu Kang ◽  
Sun-Hee Kim

In this study, an experiment on compressive strength of the hybrid concrete-filled fiber-reinforced polymer (FRP) tube (CFFT) confined by filament winding was conducted to improve the longitudinal strength while considering the thickness of filament winding as a variable. A maximum error of 17% was observed when the results of performing the finite element analysis (FEA) by applying the mechanical properties of the fiber-reinforced polymer (FRP) materials suggested in previous studies were compared to those of the compressive strength experiment on the hybrid-CFFT. Moreover, a maximum error of 15% was exhibited when the results derived from the strength equation proposed by analyzing the compressive strength experiment were compared. Furthermore, the compressive strength of the hybrid-CFFT increased by up to 14% when the longitudinal compressive strength of the pre-tensioned spun high strength concrete (PHC) pile and concrete-filled tube (CFT) were compared.

1994 ◽  
Vol 116 (3) ◽  
pp. 167-172 ◽  
Author(s):  
P. K. Dutta

Polymeric composites are relatively inexpensive materials of high strength, in which deformation of the matrix is used to transfer stress by means of shear traction at the fiber-matrix interface to the embedded high-strength fibers. At low temperatures, complex stresses are set up within the microstructure of the material as a result of matrix stiffening and mismatch of thermal expansion coefficients of the constituents of the composites. These stresses in turn affect the strength and deformation characteristics of the composites. This is demonstrated by compression testing of an unidirectional glass-fiber-reinforced polymer composite at room and low temperatures. The increase of compressive strength matched the analytical prediction of strength increase modeled from the consideration of increase in matrix stiffness and thermal residual stresses at low temperatures. Additional compression tests performed on a batch of low-temperature thermally cycled specimens confirmed the predictable reduction of brittleness due to suspected increase of microcrack density. The mode of failure characterized by definite pre-fracture yielding conforms more to Budiansky’s plastic microbuckling theory than to Rosen’s theory of elastic shear or extensional buckling.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yue Liu ◽  
Jia-Zhan Xie ◽  
Jing-Liang Yan

Fiber-reinforced polymer (FRP) has been widely used in civil engineering due to its light weight, high strength, convenient construction, and strong corrosion resistance. One of the important applications of FRP composites is the concrete-filled FRP tube (CFFT), which can greatly improve the compressive strength and ductility of concrete as well as facilitate construction. In this article, the compressive performances of a normal concrete-filled FRP tube (N-CFFT) column with 5-hour curing time and an ultra-early strength concrete-filled FRP tube (UES–CFFT) column with zero curing time were studied by considering the characteristics of rapid early strength improvement of ultra-early strength concrete and the confinement effect of the FRP tube. Monotonic axial compression tests were carried out on 3 empty FRP tubes (FTs) without an internal filler and 6 CFFT (3 N-CFFTs and 3 UES-CFFTs) specimens. All specimens were cylinders of 200 mm in diameter and 600 mm in height, confined by glass fiber–reinforced polymer (GFRP). Test results indicated that the compressive bearing capacity of the specimens increased significantly by adopting the ultra-early strength concrete as the core concrete of the CFFT, although the curing time was zero. It was also shown that the compressive behavior of the UES–CFFT specimens with zero curing time increased significantly than that of the N-CFFT specimens with 5-hour curing time because the former was able to achieve rapid strength enhancement in a very short time than the latter. The ultimate compressive strength of UES–CFFT specimens with zero curing time reached 78.3 MPa, which was 66.2 and 97.2% higher than that of N-CFFT with 5-hour curing time and FT specimens, respectively. In addition, a simple confinement model to predict the strength of UES–CFFT with zero curing time in ultimate condition was introduced. Compared with the existing models, the proposed model could predict the ultimate strength of UES–CFFT specimens with zero curing time with better accuracy.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Gabriel Mansour ◽  
Panagiotis Kyratsis ◽  
Apostolos Korlos ◽  
Dimitrios Tzetzis

There are numerous engineering applications where Glass Fiber Reinforced Polymer (GFRP) composite tubes are utilized, such as desalination plants, power transmission systems, and paper mill, as well as marine, industries. Some type of machining is required for those various applications either for joining or fitting procedures. Machining of GFRP has certain difficulties that may damage the tube itself because of fiber delamination and pull out, as well as matrix deboning. Additionally, short machining tool life may be encountered while the formation of powder like chips maybe relatively hazardous. The present paper investigates the effect of process parameters for surface roughness of glass fiber-reinforced polymer composite pipes manufactured using the filament winding process. Experiments were conducted based on the high-speed turning Computer Numerical Control (CNC) machine using Poly-Crystalline Diamond (PCD) tool. The process parameters considered were cutting speed, feed, and depth of cut. Mathematical models for the surface roughness were developed based on the experimental results, and Analysis of Variance (ANOVA) has been performed with a confidence level of 95% for validation of the models.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1898
Author(s):  
Marek Urbański

A new type of HFRP hybrid bars (hybrid fiber reinforced polymer) was introduced to increase the rigidity of FRP reinforcement, which was a basic drawback of the FRP bars used so far. Compared to the BFRP (basalt fiber reinforced polymer) bars, modification has been introduced in HFRP bars consisting of swapping basalt fibers with carbon fibers. One of the most important mechanical properties of FRP bars is compressive strength, which determines the scope of reinforcement in compressed reinforced concrete elements (e.g., column). The compression properties of FRP bars are currently ignored in the standards (ACI, CSA). The article presents compression properties for HFRP bars based on the developed compression test method. Thirty HFRP bars were tested for comparison with previously tested BFRP bars. All bars had a nominal diameter of 8 mm and their nonanchored (free) length varied from 50 to 220 mm. Test results showed that the ultimate compressive strength of nonbuckled HFRP bars as a result of axial compression is about 46% of the ultimate strength. In addition, the modulus of elasticity under compression does not change significantly compared to the modulus of elasticity under tension. A linear correlation of buckling load strength was proposed depending on the free length of HFRP bars.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1667 ◽  
Author(s):  
Dipen Rajak ◽  
Durgesh Pagar ◽  
Pradeep Menezes ◽  
Emanoil Linul

Composites have been found to be the most promising and discerning material available in this century. Presently, composites reinforced with fibers of synthetic or natural materials are gaining more importance as demands for lightweight materials with high strength for specific applications are growing in the market. Fiber-reinforced polymer composite offers not only high strength to weight ratio, but also reveals exceptional properties such as high durability; stiffness; damping property; flexural strength; and resistance to corrosion, wear, impact, and fire. These wide ranges of diverse features have led composite materials to find applications in mechanical, construction, aerospace, automobile, biomedical, marine, and many other manufacturing industries. Performance of composite materials predominantly depends on their constituent elements and manufacturing techniques, therefore, functional properties of various fibers available worldwide, their classifications, and the manufacturing techniques used to fabricate the composite materials need to be studied in order to figure out the optimized characteristic of the material for the desired application. An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications. Their exceptional performance in the numerous fields of applications have made fiber-reinforced composite materials a promising alternative over solitary metals or alloys.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1966 ◽  
Author(s):  
Waqas ◽  
Shi ◽  
Imran ◽  
Khan ◽  
Tong ◽  
...  

Radomes are usually constructed from sandwich structures made of materials which usually have a low dielectric constant so that they do not interfere with electromagnetic waves. Performance of the antenna is increased by the appropriate assortment of materials enabling it to survive under marine applications, and it depends on composite strength-to-weight ratio, stiffness, and resistance to corrosion. The design of a sandwich core submarine radome greatly depends on the material system, number of layers, orientation angles, and thickness of the core material. In this paper, a conceptual design study for a sandwich core submarine radome is carried out with the help of finite element analysis (FEA) using two unidirectional composite materials—glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP)—as a skin material and six different core materials. Conceptual designs are obtained based on constraints on the composite materials’ failure, buckling, and strength. The thickness of the core is reduced under constraints on material and buckling strength. Finite element analysis software ANSYS WORKBENCH is used to carry out all the simulations.


2019 ◽  
Vol 271 ◽  
pp. 01012
Author(s):  
Diogo Zignago ◽  
Michele Barbato

Confinement of reinforced concrete (RC) piers generally has a beneficial effect on both the compressive strength and the ductility of the confined member. Thus, externally-bonded fiber-reinforced polymer (FRP) wrapping is often used as a retrofit technique for bridge piers when additional compressive strength is needed. This study employs finite element analysis and a recently developed FRP-and-steel confined concrete model to investigate the influence of internal steel confinement on the response of circular RC columns confined with FRP and subject to concentric axial load. This new model leads to more accurate estimates of the response of these columns, what is particularly relevant for piers in short span bridges that are subjected mainly to vertical loads, for which it could lead to a more efficient and economical piers’ retrofit, as well as a more accurate and less conservative bridge rating. A parametric study is conducted to examine the importance of some key parameters in the design of such columns.


Sign in / Sign up

Export Citation Format

Share Document