scholarly journals Effect of Biodiesel Concentration on Corrosion of Carbon Steel by Serratia marcescens

2018 ◽  
Vol 156 ◽  
pp. 01008 ◽  
Author(s):  
Yustina M Pusparizkita ◽  
Tjandra Setiadi ◽  
Ardiyan Harimawan

Biodiesel come into being used as an alternative source of energy as the diminishing of petroleum reserves. This fuel is typically stored in tanks that are commonly made from carbon steel, which is easily corroded by microorganisms. Recent studies have shown that bacteria aside from SRB may also be involved in corrosion. Therefore, this research was aimed to evaluate the effect of biodiesel concentration (15%, 20% and 30% v/v) mixed in diesel oil on the corrosion of carbon steel by S. marcescens that dominate biocorrosion on hydrocarbon products. In this study, the corrosion process was investigated by evaluation of biofilm morphology and composition, the rate of corrosion and the corrosion product of carbon steel which was exposed in the mixture of hydrocarbons and the presence of S. marcescens. It can be concluded that higher concentration of biodiesel in diesel oil leads to higher growth of bacteria in the biofilm and higher corrosion rate.

2021 ◽  
Vol 12 (4) ◽  
pp. 5698-5708

Microorganisms in biodiesel storage tanks may generate bio-corrosion due to their hygroscopic and susceptible fuel degradation. The organisms, including Bacillus megaterium present in the hydrocarbons, resulted from the EPS and metabolites processes that subsequently control the corrosion process of the tank. This present study examined the effect of biodiesel concentration on microbial activity through TPC analyzing growth for B. megaterium. Furthermore, this study investigated EPS formation and acid metabolites production by B. megaterium based on SEM observations and acidimetric titration. Meanwhile, this study investigated the microorganism-induced corrosion impact based on gravimetric analysis. The results explained a higher biodiesel concentration in diesel oil promoted an increase in the growth of B. megaterium and the corrosion rate. Conversely, the acid metabolites produced from bacteria under the biofilm did not significantly increase the corrosion rate. Corrosion products resulting from the B. megaterium activity on the surface of the steel included Iron (II, III) oxide (Fe2O3 and Fe3O4). The formation of oxide and pitting may control the strength of the surface tank in the course of biofuel storage, which may lead to the failure of the material.


2020 ◽  
Vol 8 (2) ◽  
pp. 159-168
Author(s):  
Ismi Nurhayati ◽  
◽  
Pulung Karo Karo ◽  
Syafriadi Syafriadi ◽  
◽  
...  

Research has been conducted on the effectiveness of maja fruit skin extract as an inhibitor of carbon steel AISI 1020 in a corrosive medium NaCl 3% with variations in immersion time. The samples carbon steel AISI 1020 were immersed in corrosive medium NaCl 3% without being given and given the inhibitor of maja skin extract with a concentration of 0.8% for 5, 15, 25, 35, and 45 days. Calculation of reduction in corrosion rate is carried out by the method of weight loss. The results showed that the addition of the maja fruit skin extract inhibitor was effective in reducing the corrosion rate of the sample with the greatest efficiency at 35 days immersion, which was equal to 72.35%. The results of XRD characterization show that the phase formed is pure Fe and Fe3O4 phase which is a corrosion product is immersed without inhibitor. The results of SEM characterization showed that the microstructure of the surface of the sample after immersion was there were cracks, holes, and lumps which indicated that the sample had been corroded. The results of EDS characterization show that in the soaked sample there were corrosion products in the form of FeO compounds whose magnitude increased every time immersion.


2013 ◽  
Vol 4 (3) ◽  
pp. 62-89
Author(s):  
Basim O. Hasan ◽  
Sara A. Sadek

 Carbon steel is a major metal used in manufacturing of the equipments used in petroleum industry and it is subject to different operating conditions causing various corrosion attacks. Corrosion of carbon steel in sodium sulphate solution (Na2SO4) under flow conditions was investigated using rotating cylinder electrode (RCE) for a range of rotation velocity (0 – 2000 rpm) and temperatures (32 - 52 oC). The corrosion rate  was determined by using both weight loss method and electrochemical polarization technique (limiting current density). Different salt concentrations were investigated ranged from 0.01 to 0.4 M. The effect of time (or corrosion product formation) and the effect of oxygen concentration through air bubbling in the solution were also investigated and discussed. The results showed that increasing  rotational velocity leads to a considerable increase in the corrosion rate represented by limiting current density. The corrosion rate had unstable trend with salt concentrations and temperature. Generally, the corrosion rate decreased appreciably with time due to the formation of corrosion product layer depending on rotational velocity, temperature, and oxygen concentration. It was found that, air pumping through the salt solution leads to a considerable increase in the limiting current density (iL) depending on rotational velocity, temperature, and time.


2017 ◽  
Vol 740 ◽  
pp. 3-8
Author(s):  
Saeid Kakooei ◽  
Mokhtar Che Ismail ◽  
Bothi Raja ◽  
Hamed Mohebbi ◽  
Seyed Sattar Emamian ◽  
...  

Corrosion of carbon steel in CO2 saturated NaCl solution contains the formation of FeCO3, as a corrosion product. The protective property of the formed FeCO3 scale layer to corrosion in brine solutions containing CO2 was established as the possible cause of the corrosion rate decrease above 60 °C. In this study, formation of nanoscale FeCO3 film as a corrosion product of X52 carbon steel in CO2-Saturated 3% NaCl solution was investigated. Result showed that corrosion rate decreased after precipitation and formation of protective FeCO3 film in high temperature and high bulk solution pH.


2015 ◽  
Vol 1087 ◽  
pp. 276-281
Author(s):  
A. Ismail ◽  
Mohd Fuzaimie Ahmad Fuad

Corrosion is the reaction between the material and the environment that cause degradation of the material. Corrosion reduces the essential properties of materials such as strength, appearance, toughness and life expectancy. Carbon steels are composed of a mixture of metallic iron and carbon and being used extensively in every sector due to good mechanical properties and good cost. However, carbon steel are every susceptible to corrosion attack especially in corrosive environment. The use of inhibitors is one of the best options to protect against corrosion on metals and alloys especially in a closed system. Inhibitor is a chemical substance which can reduce corrosion attack when added into electrolyte. The organic inhibitor used in this study was from banana peel (scientific name Musa sapieutum) to extract tannin-a compound which can provide protective layer on metal [1-3]. The results elucidate that banana peel can be used as green inhibitor on canbon steel, however, the effect only can be seen when added with 10% and more. The immersion test was done to evaluate the effect of corrosion product to corrosion rate. The results explained that corrosion rate fluctuated during immersion period due to developed and dissolved of soluble product into electrolyte. The research provide a set of data elucidate that corrosion product developed on carbon steel cannot provide corrosion protection on carbon steel, however, using green inhibitor in high concentrations which is purely not harmful to environment could prevent corrosion attack on carbon steel.


1994 ◽  
Vol 353 ◽  
Author(s):  
Yoichi Kojima ◽  
Toshinobu Hioki ◽  
Shigeo Tsujikawa

AbstractThe use of bentonite as buffer and carbon steel as overpack material for the geological disposal of nuclear waste is under investigation. To better assess the long term integrity of the carbon steel overpack, a quantitative analysis of the corrosion behavior on the steel surface for time frames beyond that of feasible empirical determination is required. The state n years after disposal, consisting of Carbon Steel / Corrosion Products + Bentonite / Water, was simulated and the corrosion behavior of the carbon steel in this state investigated. The following facts became apparent. Both the corrosion rate and the non-uniformity of it increased with increase in the corrosion product content in the compacted bentonite. When the corrosion product layer was formed between the carbon steel and the bentonite, it ennobled the corrosion potential and increased the corrosion rate.


2020 ◽  
Vol 69 (4) ◽  
pp. 102-106
Author(s):  
Shota Ohki ◽  
Shingo Mineta ◽  
Mamoru Mizunuma ◽  
Soichi Oka ◽  
Masayuki Tsuda

CORROSION ◽  
1966 ◽  
Vol 22 (5) ◽  
pp. 143-146 ◽  
Author(s):  
W. McLEOD ◽  
R. R. ROGERS

Abstract Corrosion rate data are presented for low carbon steel in (1) a combination of sulfur dioxide, water vapor and air, and (2) aqueous solutions of sulfurous acid in the absence of air, at ordinary temperature. Information as to the nature of the corrosion products is presented and it is shown that this depends on the place in which the corrosion takes place to an important extent.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3563
Author(s):  
Mathieu Robineau ◽  
Valérie Deydier ◽  
Didier Crusset ◽  
Alexandre Bellefleur ◽  
Delphine Neff ◽  
...  

Carbon steel coupons were buried in a specific low-pH cement grout designed for radioactive waste disposal and left 6 months in anoxic conditions at 80 °C. The corrosion product layers were analyzed by µ-Raman spectroscopy, XRD, and SEM. They proved to be mainly composed of iron sulfides, with magnetite as a minor phase, mixed with components of the grout. Average corrosion rates were estimated by weight loss measurements between 3 and 6 µm yr−1. Corrosion profiles revealed local degradations with a depth up to 10 µm. It is assumed that the heterogeneity of the corrosion product layer, mainly composed of conductive compounds (FeS, Fe3S4, and Fe3O4), promotes the persistence of corrosion cells that may lead to locally aggravated degradations of the metal. New cement grouts, characterized by a slightly higher pH and a lower sulfide concentration, should then be designed for the considered application.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3381
Author(s):  
Gabriela Gąsior ◽  
Jonasz Szczepański ◽  
Aleksandra Radtke

Iron, while attracting less attention than magnesium and zinc, is still one of the best candidates for biodegradable metal stents thanks its biocompatibility, great elastic moduli and high strength. Due to the low corrosion rate, and thus slow biodegradation, iron stents have still not been put into use. While these problems have still not been fully resolved, many studies have been published that propose different approaches to the issues. This brief overview report summarises the latest developments in the field of biodegradable iron-based stents and presents some techniques that can accelerate their biocorrosion rate. Basic data related to iron metabolism and its biocompatibility, the mechanism of the corrosion process, as well as a critical look at the rate of degradation of iron-based systems obtained by several different methods are included. All this illustrates as the title says, what was done within the topic of biodegradable iron-based materials and what more can be done.


Sign in / Sign up

Export Citation Format

Share Document