scholarly journals Assessment of shear capacity. Part II: Experimental test

2018 ◽  
Vol 196 ◽  
pp. 02040
Author(s):  
Maria Włodarczyk

Results of experiments carried out on beams with varying shear reinforcement are presented. Depending on the amount of transverse reinforcement different failure modes with different ultimate loads were recorded. The results were compared to theoretical load capacity estimates. Three models for shear capacity were used: classical, EC and Zararis described in the accompanying paper [1]. When shear failure mode governs beam behaviour, theoretical results according to the EC and Zararis are in good compatibility with experiments.

2020 ◽  
pp. 136943322098165
Author(s):  
Jianyang Xue ◽  
Xin Zhang ◽  
Xiaojun Ke

This paper mainly focused on the seismic performance and shear calculation method of steel reinforced high-strength concrete (SRHC) columns with rectangular helical hoops. An experimental investigation was performed in this paper. Eleven SRHC columns with rectangular helical hoops and one with ordinary hoops were constructed at the laboratory of Guangxi university. The failure modes, hysteresis loops, envelope curves, characteristic loads and displacements and cumulative damage analysis are presented and investigated. It can be seen from the test results that the failure modes of SRHC columns can be divided into three types with the shear span ratio increased, namely, shear baroclinic failure mode, flexure-shear failure mode and flexure failure mode. In addition, the specimens with rectangular helical hoops have plumper hysteretic loops. Shear span ratio is the main influencing factor of characteristic load; the axial compression ratio and concrete strength have less influence on characteristic load, while stirrup ratio has little effect on the characteristic load. Finally, a calculation method for shear capacity of SRHC columns under shear baroclinic failure and flexure-shear failure mode is proposed.


2012 ◽  
Vol 204-208 ◽  
pp. 3009-3015
Author(s):  
Bing Hong Li ◽  
Shi Yong Jiang ◽  
Qian Hua Shi ◽  
Xian Qi Hu

The failure modes and the shear capacity of concrete beams reinforced with FRP reinforcement were discussed through an experimental investigation, in which continuous FRP rectangular spirals were used for shear reinforcement, while ordinary deformed steel bars are used for longitudinal reinforcement. Six concrete beams reinforced with FRP spirals were tested, the main variables considered were the shear reinforcement ratios, the shear span to depth ratios and the longitudinal reinforcement ratios. Two concrete beams of equal shear capacity which reinforced with continuous steel rectangular spirals were also tested to compare the behavior of concrete beams reinforced with different materials of spirals. All beams were tested as simply supported members subjected to a three-point load, the span of the beams varied in terms of different shear span to depth ratios. The test results show that the shear capacity and shear failure modes are greatly influenced by the shear reinforcement ratios and the shear span to depth ratios, the shear resistance provided by steel spirals is higher than that provided by FRP spirals in the case of equal shear capacity of beams, which is attributed to the differences in material properties and may result in different shear failure types. Based on the experimental program, four mechanical models are derived to give more accurate predictions of the shear capacity of test beams, the calculation results of these models are compared with that of the existing shear formulas or equations for concrete beams reinforced with FRP stirrups or spirals. The rotating-angle softened truss model, the strut-and-tie model, the shear formulas derived from the truss-arch model and Zsutty equations are suggested through comparison.


Author(s):  
Dongqi Jiang ◽  
Shanquan Liu ◽  
Tao Chen ◽  
Gang Bi

<p>Reinforced concrete – steel plate composite shear walls (RCSPSW) have attracted great interests in the construction of tall buildings. From the perspective of life-cycle maintenance, the failure mode recognition is critical in determining the post-earthquake recovery strategies. This paper presents a comprehensive study on a wide range of existing experimental tests and develops a unique library of 17 parameters that affects RCSPSW’s failure modes. A total of 127 specimens are compiled and three types of failure modes are considered: flexure, shear and flexure-shear failure modes. Various machine learning (ML) techniques such as decision trees, random forests (RF), <i>K</i>-nearest neighbours and artificial neural network (ANN) are adopted to identify the failure mode of RCSPSW. RF and ANN algorithm show superior performance as compared to other ML approaches. In Particular, ANN model with one hidden layer and 10 neurons is sufficient for failure mode recognition of RCSPSW.</p>


2012 ◽  
Vol 166-169 ◽  
pp. 1489-1497 ◽  
Author(s):  
Shi Yan ◽  
Lei Liu ◽  
Peng Li ◽  
Zhi Qiang Xin ◽  
Bao Xin Qi

The dynamic response and failure mode of light-weight steel columns under blast loads were studied in this paper by using nonlinear finite element analysis (FEA) software ANSYS/ LS-DYNA, aiming to develop the degree and modes of the excessive plastic deformation during failures of the columns under diverse parameters. The damaged columns with initial blast-induced deformation may evidently influence vertical stability of light-weight steel frame structures. During the numerical simulation, the element of three dimensional solid SOLID164 was used, and the strain rate effect on material strength was included in the material model with Plastic-Kinematic (MAT-03). The main parameters included in the analysis were boundary conditions, scaled distances of explosions, and the vertical compressive load ratios applied on tops of the columns. The results showed that the column with both two fixed ends was the most beneficial to resist blast shock wave, the horizontal displacement at the middle span of the columns were obviously decreasing as increasing of the scaled distances of the explosion, and the axial compression ratio only significantly influenced the column with a sliding end. The failure modes of the developed columns may be summarized as bending failure, direct shear failure, and bending shear combination failure.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jian Hou ◽  
Li Song

The present study investigated the various failure modes of strengthened steel columns by mortar-filled fiber-reinforced polymer (FRP) tubes to analytically formulate the ultimate capacities of these steel columns. A simple and effective method, wherein a mortar-filled FRP tube was sleeved outside the steel member, was also formulated to enhance the buckling resistance capacity of compressed steel members. In addition, to facilitate the connection of the column to other structural members, the length of the sleeved mortar-filled FRP tubes is less than that of the original steel columns. Theoretical analyses were also performed on the critical sections of such composite columns at their ultimate states to identify their potential failure modes, such as FRP-tube splitting at the ends or on the insides of wrapped areas, local buckling at the steel ends of transition zones, and global buckling of the composite columns. The corresponding ultimate capacity of each failure mode was then analytically formulated to characterize the critical failure mode and ultimate load capacity of the columns. The current theoretical results were compared with those from literature to validate the applicability of the developed ultimate limit design approaches for FRP-mortar-steel composite columns.


2020 ◽  
Vol 8 (3) ◽  
pp. 127-136
Author(s):  
Taufiq Saidi ◽  
Rudiansyah Putra ◽  
Zahra Amalia ◽  
Munawir Munawir

Proper design of transverse reinforcement in the RC column is needed to maintain its ability to deform under axial and shear load safely. Even though mandatory building codes for transverse support of the RC column exist, shear failure was still found in the last high earthquake in Pidie, Aceh, in 2016. Therefore, as an attempt to improve RC column strength and elasticity, the effect of transverse reinforcement configuration was evaluated experimentally to a column subjected to an axial and shear load. The experiment was conducted by using four-column specimens with a cross-section 200 x 200 mm. Four types of transverse reinforcement configurations were applied in each column. The test was carried out by loading an axial load always and shear load gradually until its failure. The test results show that the configuration of transverse reinforcement has a significant effect of maintaining column stiffness, which was subjected to compressive axial load and shear load. Furthermore, the arrangement of transverse reinforcement influences the compressive strength significantly and enhance the concrete shear capacity of a column due to its confinement effect.


Author(s):  
Fatma M. Eid ◽  
Tayel Magdy ◽  
Ebada Ahmed

Punching shear failure is a major problem encountered in the design of reinforced concrete flat slabs. The utilization of shear reinforcement via shear studs or other means has become a choice for improving the punching shear capacity. In this study, a new alternative of reinforcement modalities were tested and demonstrated the effect of self-compact concrete on the punching shear capacity, beside that compared between the difference codes to identify the suitable one for determining the position of critical section of punching shear. Nevertheless, in this investigation, the proposed reinforcement system is examined for interior columns only. An experimental work consisting of six specimens: five of them were cast with normal reinforced concrete and one was cast with self-compact strength concrete. The obtained results indicate that the proposed shear reinforcement system has a positive effect in the enhancement of the punching shear capacity of interior slab–column connection of self-compact strength concrete.


Author(s):  
Pramod Rai ◽  
Kitjapat Phuvoravan

This research investigated the shear strengthening technique of Reinforced Concrete (RC) deep beams using a V-shaped external rod system. Shear behavior, the stress in an external rod, and the shear capacity at the diagonal shear failure of a strengthened beam were focused mainly. Experimental tests of control and two strengthened beams were carried out to observe the effect of the external rod on shear behavior of RC deep beam. A theoretical approach to compute the stress in the external rod and the nominal strength of the strengthened beam in the diagonal shear failure were examined based on the experimental test results and verified using Finite Element Method (FEM) in ABAQUS. The computed nominal shear strength of the strengthened beam was 10% higher than the experimental test. The strengthening technique shifted the brittle shear failure to ductile shear failure and improved the performance of RC deep beam.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5141
Author(s):  
Edyta Bernatowska ◽  
Lucjan Ślęczka

This paper presents the results of experimental and numerical tests on angle members connected by one leg with a single row of bolts. This study was designed to determine which failure mode governs the resistance of such joints: net section rupture or block tearing rupture. Experimental tests were insufficient to completely identify the failure modes, and it was necessary to conduct numerical simulations. Finite element analysis of steel element resistance based on rupture required advanced material modelling, taking into account ductile initiation and propagation of fractures. This was realised using the Gurson–Tvergaard–Needleman porous material model, which allows for analysis of the joint across the full scope of its behaviour, from unloaded state to failure. Through experimental testing and numerical simulations, both failure mechanisms (net section and block tearing) were examined, and an approach to identify the failure mode was proposed. The obtained results provided experimental and numerical evidence to validate the strength function used in design standards. Finally, the obtained results of the load capacity were compared with the design procedures given in the Eurocode 3′s current and 2021 proposed editions.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4938
Author(s):  
Maciej Grabski ◽  
Andrzej Ambroziak

The scope of the paper is to propose a method for determining the size of shear caps in a slab–column-connections-reinforced concrete structure. Usually, shear heads are used to enhance slab–column connection, especially when the transverse reinforcement does not give the required punching shear load capacity. The dimensions of the shear head should provide the punching shear resistance of the connection inside and outside the enhanced region. The process of selecting the size of the shear head is iterative. The parametric analysis of the ACI 318 code and EC2 standard has the objective of indicating which control perimeter (inside or outside the shear head) has a decisive impact on the punching shear capacity of the connection. Based on the analysis, the authors propose methods for selecting the dimensions of the shear head with practical application examples. The paper is intended to provide scientists, civil engineers, and designers with guidelines to design the process of the slab–column connections with the shear caps.


Sign in / Sign up

Export Citation Format

Share Document