Dynamic Response and Failure Mode Analysis on Light-Weight Steel Columns under Blast Loads

2012 ◽  
Vol 166-169 ◽  
pp. 1489-1497 ◽  
Author(s):  
Shi Yan ◽  
Lei Liu ◽  
Peng Li ◽  
Zhi Qiang Xin ◽  
Bao Xin Qi

The dynamic response and failure mode of light-weight steel columns under blast loads were studied in this paper by using nonlinear finite element analysis (FEA) software ANSYS/ LS-DYNA, aiming to develop the degree and modes of the excessive plastic deformation during failures of the columns under diverse parameters. The damaged columns with initial blast-induced deformation may evidently influence vertical stability of light-weight steel frame structures. During the numerical simulation, the element of three dimensional solid SOLID164 was used, and the strain rate effect on material strength was included in the material model with Plastic-Kinematic (MAT-03). The main parameters included in the analysis were boundary conditions, scaled distances of explosions, and the vertical compressive load ratios applied on tops of the columns. The results showed that the column with both two fixed ends was the most beneficial to resist blast shock wave, the horizontal displacement at the middle span of the columns were obviously decreasing as increasing of the scaled distances of the explosion, and the axial compression ratio only significantly influenced the column with a sliding end. The failure modes of the developed columns may be summarized as bending failure, direct shear failure, and bending shear combination failure.

2012 ◽  
Vol 204-208 ◽  
pp. 3094-3098
Author(s):  
Yun Fei Liu ◽  
Hong Gang Lei

Using finite software ANSYS LS/DYNA for simulating the impact response and failure modes of H section steel frame columns subject to blast loads,and loading different load conditions, changing column boundary conditions and web plate thickness. Conclusion: the failure model of steel columns changes with the change of load form,steel columns will be easy to occur shear failure in the end by the dynamic load, and the flange will be easy to occur bucking failure in local by impulse load; In the case of same size and web thickness, increase the web thickness can reduce the deformation of column effectively, improve the capability of H section steel column resist the blast load.


Author(s):  
Martin Versen ◽  
Dorina Diaconescu ◽  
Jerome Touzel

Abstract The characterization of failure modes of DRAM is often straight forward if array related hard failures with specific addresses for localization are concerned. The paper presents a case study of a bitline oriented failure mode connected to a redundancy evaluation in the DRAM periphery. The failure mode analysis and fault modeling focus both on the root-cause and on the test aspects of the problem.


2016 ◽  
Vol 33 (6) ◽  
pp. 830-851 ◽  
Author(s):  
Soumen Kumar Roy ◽  
A K Sarkar ◽  
Biswajit Mahanty

Purpose – The purpose of this paper is to evolve a guideline for scientists and development engineers to the failure behavior of electro-optical target tracker system (EOTTS) using fuzzy methodology leading to success of short-range homing guided missile (SRHGM) in which this critical subsystems is exploited. Design/methodology/approach – Technology index (TI) and fuzzy failure mode effect analysis (FMEA) are used to build an integrated framework to facilitate the system technology assessment and failure modes. Failure mode analysis is carried out for the system using data gathered from technical experts involved in design and realization of the EOTTS. In order to circumvent the limitations of the traditional failure mode effects and criticality analysis (FMECA), fuzzy FMCEA is adopted for the prioritization of the risks. FMEA parameters – severity, occurrence and detection are fuzzifed with suitable membership functions. These membership functions are used to define failure modes. Open source linear programming solver is used to solve linear equations. Findings – It is found that EOTTS has the highest TI among the major technologies used in the SRHGM. Fuzzy risk priority numbers (FRPN) for all important failure modes of the EOTTS are calculated and the failure modes are ranked to arrive at important monitoring points during design and development of the weapon system. Originality/value – This paper integrates the use of TI, fuzzy logic and experts’ database with FMEA toward assisting the scientists and engineers while conducting failure mode and effect analysis to prioritize failures toward taking corrective measure during the design and development of EOTTS.


Author(s):  
Dongqi Jiang ◽  
Shanquan Liu ◽  
Tao Chen ◽  
Gang Bi

<p>Reinforced concrete – steel plate composite shear walls (RCSPSW) have attracted great interests in the construction of tall buildings. From the perspective of life-cycle maintenance, the failure mode recognition is critical in determining the post-earthquake recovery strategies. This paper presents a comprehensive study on a wide range of existing experimental tests and develops a unique library of 17 parameters that affects RCSPSW’s failure modes. A total of 127 specimens are compiled and three types of failure modes are considered: flexure, shear and flexure-shear failure modes. Various machine learning (ML) techniques such as decision trees, random forests (RF), <i>K</i>-nearest neighbours and artificial neural network (ANN) are adopted to identify the failure mode of RCSPSW. RF and ANN algorithm show superior performance as compared to other ML approaches. In Particular, ANN model with one hidden layer and 10 neurons is sufficient for failure mode recognition of RCSPSW.</p>


2020 ◽  
pp. 136943322098165
Author(s):  
Jianyang Xue ◽  
Xin Zhang ◽  
Xiaojun Ke

This paper mainly focused on the seismic performance and shear calculation method of steel reinforced high-strength concrete (SRHC) columns with rectangular helical hoops. An experimental investigation was performed in this paper. Eleven SRHC columns with rectangular helical hoops and one with ordinary hoops were constructed at the laboratory of Guangxi university. The failure modes, hysteresis loops, envelope curves, characteristic loads and displacements and cumulative damage analysis are presented and investigated. It can be seen from the test results that the failure modes of SRHC columns can be divided into three types with the shear span ratio increased, namely, shear baroclinic failure mode, flexure-shear failure mode and flexure failure mode. In addition, the specimens with rectangular helical hoops have plumper hysteretic loops. Shear span ratio is the main influencing factor of characteristic load; the axial compression ratio and concrete strength have less influence on characteristic load, while stirrup ratio has little effect on the characteristic load. Finally, a calculation method for shear capacity of SRHC columns under shear baroclinic failure and flexure-shear failure mode is proposed.


2015 ◽  
Vol 730 ◽  
pp. 81-84
Author(s):  
Huan Jin

Based on the quasi-static test of single-layer, two-bay RC frame model, using DIANA finite element program, a finite element Macro-model of masonry-infilled frame structure was established, and nonlinear finite element analysis of frame structures filled with different masonry materials was conducted. As a result of the existence of infill walls, the failure modes of frame structure have been changed, and which is easy to cause shear failure at the top of frame columns. If masonry materials of infill walls are different, the effects of infill panels on frame structures will be different. Comparative analysis shows that the influence of clay bricks is the largest, followed by autoclaved bricks’ influence, while aerated concrete blocks’ influence is the smallest. Therefore, to avoid the associated failure mechanism caused by infill walls, lightweight masonry materials are suggested to be used in actual engineering.


Author(s):  
Karsten Stahl ◽  
Bernd-Robert Höhn ◽  
Thomas Tobie

Pitting and tooth root breakage are typical fatigue failure modes of case hardened gears. Both failure types are usually initiated at the surface or close to the surface. General trends in modern gear industry, such as improved gear design with adequate flank modifications, high-quality gear materials and high-performance lubricants, modern manufacturing processes with additional post-processes as shot peening and superfinishing as well as advanced calculation methods, have allowed an optimized utilization of the allowable pitting and bending stress numbers in recent years. As a result of the increased power density, however, the stresses below the surface rise with the consequence of an increased risk of fatigue failure initiation in the material below the surface. This paper describes main characteristics of a failure mode characterized by tooth breakages which start in the area of the active flank from cracks that are typically initiated at a considerable depth beneath the loaded flank surface. Based on theoretical and experimental investigations, relevant influence parameters related to gear design, operating conditions and material strength on the failure mode “Tooth Flank Breakage” will be discussed and basic principles of a developed calculation model to evaluate the risk of such failures presented. Finally, exemplarily experimental results from gear running tests, which failed due to flank breakage, are compared to the results of the new calculation model.


2015 ◽  
Vol 727-728 ◽  
pp. 637-640
Author(s):  
Ying Liu ◽  
Zheng Hu ◽  
Shi Gang Zhang

Failure mode analysis formechatronics systems has many problems in real applications in terms of excessivedependency on experience, lack of uniform description and tedious analysis work. In order to increaseits effectiveness, an automatic failure modes analysis framework is constructedand an extended fuzzy cognitive map is used as a reasoning technique toanalysis the effect of the failures. A function-failure correlation model witha standard description is adopted to describe the relationship between failuremodes and functions, so that designers and engineers from different fields cancomprehend and communicate within the same framework. Functional flows andfailure modes are defined as basic concepts in the fuzzy cognitive map, whichprovides an easy way to carry out an automatic cause and effect reasoning.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jian Hou ◽  
Li Song

The present study investigated the various failure modes of strengthened steel columns by mortar-filled fiber-reinforced polymer (FRP) tubes to analytically formulate the ultimate capacities of these steel columns. A simple and effective method, wherein a mortar-filled FRP tube was sleeved outside the steel member, was also formulated to enhance the buckling resistance capacity of compressed steel members. In addition, to facilitate the connection of the column to other structural members, the length of the sleeved mortar-filled FRP tubes is less than that of the original steel columns. Theoretical analyses were also performed on the critical sections of such composite columns at their ultimate states to identify their potential failure modes, such as FRP-tube splitting at the ends or on the insides of wrapped areas, local buckling at the steel ends of transition zones, and global buckling of the composite columns. The corresponding ultimate capacity of each failure mode was then analytically formulated to characterize the critical failure mode and ultimate load capacity of the columns. The current theoretical results were compared with those from literature to validate the applicability of the developed ultimate limit design approaches for FRP-mortar-steel composite columns.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Lidan Mei ◽  
Nan Guo ◽  
Ling Li ◽  
Hongliang Zuo ◽  
Yan Zhao

AbstractTraditional glulam beam connection mode has a weak ability to transfer bending moment, leading to insufficient joint stiffness and mostly in the form of simply supported beams. To make full use of material strength, a novel prestressed glulam continuous beam was proposed. On this basis, this paper put forward a new method to further improve the mechanical performance of the beams by controlling prestress. According to the estimated ultimate loads of the beams, six different control range values were formulated, and 12 continuous beams were tested for flexural performance. The effects of prestressing control on the failure modes, ultimate load capacity, and load versus deformation relationships of the glulam continuous beams were analyzed. The test results indicated that the flexural performance of the beams with prestressed control was significantly improved compared to the uncontrolled beams, the ultimate load was enhanced by 13.60%–45.11%, and the average steel wire stress at failure was increased from 70% of the designed tensile strength to 94%. Combined with the finite element analysis (FEA), the reasonable control range of the prestressed control continuous beams was18%–30% of the estimated ultimate load. The research in this paper can provide references for the theoretical analysis and engineering application of similar structures.


Sign in / Sign up

Export Citation Format

Share Document