scholarly journals Hubcap and ignition switch designs - case studies in Independence Axiom

2018 ◽  
Vol 223 ◽  
pp. 01022
Author(s):  
Hilario (Larry) Oh

Independence Axiom offers designers a guide to good design. It declares that the design parameters (DPs) conceived for a good design must maintain the independence of the design functional requirements (FRs). Specifically, by relating FRs to DPs through a design matrix [DM] with elements ∂FRi/∂DPj, Independence Axiom declares that only designs with diagonal or triangular design matrix can maintain the functional independence of FRs; and that they should be the only acceptable ones. Starting with the formal definition of functional independence, we derive the criterion for functional independence of FRs as the Jacobian determinant | J | ≠ 0; where the Jacobian matrix [ J ] is shown to be identically equal to [DM]. We further show that if and only if | J | ≠ 0 can the design FRs achieve their target values. Thus the criterion | J | ≠ 0 substantiates the declaration of Independence Axiom since determinant of a diagonal or triangular design matrix is not equal to zero. It serves as the mathematical basis for teaching and implementing Independence Axiom in design. Two case studies are presented to illustrate the implementation of Independence Axiom via the Jacobian determinant | J |.

2019 ◽  
Vol 301 ◽  
pp. 00002
Author(s):  
Masayuki Nakao ◽  
Kenji Iino

This paper proposes “Value Axiom” that states “The larger the sum of Customer Attribute values, the better the design.” A customer evaluates a design with the sum of the value produced by each Customer Attribute, expressing it with a monetary value such as Japanese yen. A designer can hardly estimate and express a perfect set of Customer Attributes at the early stage of a design. The designer writes down the design equation to visualize the entire design, and improves the sets of Design Parameters and Functional Requirements using the Independence Axiom and Information Axiom, and at the same time, it is also important to review the values of Customer Attributes using the Value Axiom.


Author(s):  
Y. S. Yang ◽  
B. S. Jang ◽  
Y. S. Song ◽  
Y. S. Yeon ◽  
S. H. Do

Abstract The Design Axioms proposed by N. P. Suh consist of Independence Axiom and Information Axiom. The Independence Axiom assists a designer in generating good design alternatives by considering the relations between the functions and the physical product using a hierarchical mapping procedure. The Information Axiom, which is related to the probability of achieving the given functional requirements, can be used as a criterion for the selection of the best solution among the proposed alternatives in the conceptual or preliminary design stage. In the early stages of marine design, especially ship design, there exists a lot of uncertainty because of the size and complexity of a marine vehicle. The uncertainty often leads to a probabilistic approach rather than a deterministic approach. The ship designs are mostly routine design to change an existing design case a little. In this paper, the availability of the Design Axioms in this marine design field will be investigated through three examples. In the conceptual design of a thruster, the Independence Axiom will be proven to be useful in examining the independence of functional requirements at each level of the decomposition process. In main engine selection example, the Information Axiom will be used for selecting the best solution among the given alternatives by estimating their respective information contents under the uncertain and ambiguous condition. In the structural design, some difficulties arise in maintaining the independence of functional requirements in general because the number of design parameters is greater than that of functional requirements. Therefore, there is much trouble in generalizing the application of the Design Axioms for the structural design, especially for the preliminary design where the principal design parameters of a design object have to be determined after its shape fixed. This paper will try a generalized approach to the similarity-based design where it is important to select which parameters should be changed and in what order they should be changed. How to make use of the Design Axioms will be showed in a barge design example. However, a lot of research is needed for the generalized application of the Design Axioms for the structural design.


Author(s):  
K. N. Song ◽  
B. S. Kang ◽  
K. H. Yoon ◽  
S. K. Choi ◽  
G. J. Park

Recently, much attention has been focused on the design of the fuel assemblies in the Pressurized Light Water Reactor (PLWR). The spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water, and maintains geometry from the external impact loads. In this research, a new shape of the spacer grid is designed by the axiomatic approach. The Independence Axiom is utilized for the design. For the conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detailed design is carried out based on the result of the axiomatic design. For the detailed design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3302 ◽  
Author(s):  
Miktha Farid Alkadri ◽  
Francesco De Luca ◽  
Michela Turrin ◽  
Sevil Sariyildiz

The increasing population density in urban areas simultaneously impacts the trend of energy consumption in building sectors and the urban heat island (UHI) effects of urban infrastructure. Accordingly, passive design strategies to create sustainable buildings play a major role in addressing these issues, while solar envelopes prove to be a relevant concept that specifically considers the environmental performance aspects of a proposed building given their local contexts. As significant advances have been made over the past decades regarding the development and implementation of computational solar envelopes, this study presents a comprehensive review of solar envelopes while specifically taking into account design parameters, digital tools, and the implementation of case studies in various contextual settings. This extensive review is conducted in several stages. First, an investigation of the scope and procedural steps of the review is conducted to frame the boundary of the topic to be analyzed within the conceptual framework of solar envelopes. Second, comparative analyses between categorized design methods in parallel with a database of design parameters are conducted, followed by an in-depth discussion of the criteria for the digital tools and case studies extracted from the selected references. Third, knowledge gaps are identified, and the future development of solar envelopes is discussed to complete the review. This study ultimately provides an inclusive understanding for designers and architects regarding the progressive methods of the development of solar envelopes during the conceptual design stage.


2010 ◽  
Vol 20-23 ◽  
pp. 1222-1228
Author(s):  
Ping Jiang ◽  
Jin Jin Zhai ◽  
Xiu Ping Zhao ◽  
Run Hua Tan

The integrated innovation satisfies new market or customer needs by combination of different technologies. The integration requires that element must be optimized, matched, and then combined into a whole technology system while not simply piling and regrouping. This paper put forward the functions as basis of technology selection. Axiomatic design is introduced to aid to decomposing the function and structure with its framework of independence axiom to minimize the dependence of functions of product. The design matrices and full design matrix indicate the interrelations between all functions and technologies. The new technology is chosen to implement the desired functions that satisfy more customer needs and then integrated into a whole system according to the interactions of functions.


2013 ◽  
Vol 475-476 ◽  
pp. 1402-1405
Author(s):  
Xian Fu Cheng ◽  
Qi Hang Zhu

A new design method for product family was presented based on adaptable product platform. Firstly, customer demands were analyzed for bridge crane. Secondly, axiomatic design was utilized as framework to zigzaging mapping between functional requirements and design parameters, and design matrix was established. Then the sensitivity analysis among design parameters and between design parameters and functional requirements was done. The design relation matrix was established and relation degree among design parameters was calculated. Based on above analysis, the platform parameters were identified.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Johannes Fender ◽  
L. Graff ◽  
H. Harbrecht ◽  
Markus Zimmermann

Key parameters may be used to turn a bad design into a good design with comparatively little effort. The proposed method identifies key parameters in high-dimensional nonlinear systems that are subject to uncertainty. A numerical optimization algorithm seeks a solution space on which all designs are good, that is, they satisfy a specified design criterion. The solution space is box-shaped and provides target intervals for each parameter. A bad design may be turned into a good design by moving its key parameters into their target intervals. The solution space is computed so as to minimize the effort for design work: its shape is controlled by particular constraints such that it can be reached by changing only a small number of key parameters. Wide target intervals provide tolerance against uncertainty, which is naturally present in a design process, when design parameters are unknown or cannot be controlled exactly. In a simple two-dimensional example problem, the accuracy of the algorithm is demonstrated. In a high-dimensional vehicle crash design problem, an underperforming vehicle front structure is improved by identifying and appropriately changing a relevant key parameter.


Author(s):  
Xiaohong Chen ◽  
Qing Yu

This paper presents the research in support of the development of design requirements for floating offshore wind turbines (FOWTs). An overview of technical challenges in the design of FOWTs is discussed, followed by a summary of the case studies using representative FOWT concepts. Three design concepts, including a Spar-type, a TLP-type and a Semisubmersible-type floating support structure carrying a 5-MW offshore wind turbine, are selected for the case studies. Both operational and extreme storm conditions on the US Outer Continental Shelf (OCS) are considered. A state-of-the-art simulation technique is employed to perform fully coupled aero-hydro-servo-elastic analysis using the integrated FOWT model. This technique can take into account dynamic interactions among the turbine Rotor-Nacelle Assembly (RNA), turbine control system, floating support structure and stationkeeping system. The relative importance of various design parameters and their impact on the development of design criteria are evaluated through parametric analyses. The paper also introduces the design requirements put forward in the recently published ABS Guide for Building and Classing Floating Offshore Wind Turbine Installations (ABS, 2013).


Sign in / Sign up

Export Citation Format

Share Document