scholarly journals Methodology of designing integrated technological processes for manufacturing CNC machined parts

2018 ◽  
Vol 224 ◽  
pp. 01057
Author(s):  
Viktor I. Guzeev ◽  
Danil Yu. Pimenov

The article presents a new approach to the design of technological processes of processing parts on metal cutting machines in the integrated production conditions based on the expected forecast of the parts processing accuracy. The stages of choosing the parameters of processing steps are combined with determining the parameters of the cutting tool and machining attachments by simulation modeling. The design sequence begins with the first operation.

2018 ◽  
Vol 224 ◽  
pp. 01066
Author(s):  
Anton Seleznev ◽  
Anton Smirnov ◽  
Pavel Peretyagin

The work represents a new approach of preliminary surface treatment of replaceable polyhedral cutting ceramics inserts for significant increase of adhesion strength with deposited wear-resistant nitride ceramics. By this method the hydrojet treatment was used to repair surface defects occurring during manufacturing process of any required geometry of cutting inserts.


2018 ◽  
Vol 224 ◽  
pp. 01038
Author(s):  
Olesya Anikeeva ◽  
Alexander Ivakhnenko ◽  
Oleg Erenkov

The bases of a variation method to calculate the metal-cutting systems accuracy for the first time are systemically stated in this paper. The main attention is paid to a problem of joint influence of geometrical accuracy of machine tools and cutting tools parameters on the details processed surfaces accuracy. The general mathematical model of metal-cutting systems accuracy is presented in this work. The general model is the basis to develop the full mathematical model of turning metal-cutting system accuracy. The results of accuracy modeling at turning with a wide cutter are received when studying nature of influence of the lathe and the cutting tool geometrical errors on processing accuracy of cylindrical and face surfaces. The directions of further researches in the field of calculations of metal-cutting systems accuracy at difficult surfaces processing by the shaped cutting tool and also when accounting rigidity of the systems elements and the proceeding processes are revealed in the presented work.


1998 ◽  
Vol 2 ◽  
pp. 115-122
Author(s):  
Donatas Švitra ◽  
Jolanta Janutėnienė

In the practice of processing of metals by cutting it is necessary to overcome the vibration of the cutting tool, the processed detail and units of the machine tool. These vibrations in many cases are an obstacle to increase the productivity and quality of treatment of details on metal-cutting machine tools. Vibration at cutting of metals is a very diverse phenomenon due to both it’s nature and the form of oscillatory motion. The most general classification of vibrations at cutting is a division them into forced vibration and autovibrations. The most difficult to remove and poorly investigated are the autovibrations, i.e. vibrations arising at the absence of external periodic forces. The autovibrations, stipulated by the process of cutting on metalcutting machine are of two types: the low-frequency autovibrations and high-frequency autovibrations. When the low-frequency autovibration there appear, the cutting process ought to be terminated and the cause of the vibrations eliminated. Otherwise, there is a danger of a break of both machine and tool. In the case of high-frequency vibration the machine operates apparently quiently, but the processed surface feature small-sized roughness. The frequency of autovibrations can reach 5000 Hz and more.


2007 ◽  
Vol 567-568 ◽  
pp. 185-188 ◽  
Author(s):  
Miroslav Piska

Modern trends in metal cutting, high speed/feed machining, dry cutting and hard cutting set more demanding characteristics for cutting tool materials. The exposed parts of the cutting edges must be protected against the severe loading conditions and wear. The most significant coatings methods for cutting tools are PVD and CVD/MTCVD today. The choice of the right substrate or the right protective coating in the specific machining operation can have serious impact on machining productivity and economy. In many cases the deposition of the cutting tool with a hard coating increases considerably its cutting performance and tool life. The coating protects the tool against abrasion, adhesion, diffusion, formation of comb cracks and other wear phenomena.


Author(s):  
Zezhong C. Chen ◽  
Xujing Yang

Extensive research on G1 biarcs fitting to free-form curves (i.e., Bezier, B-spline, and NURBS curves) has been conducted in the past decades for various purposes, including CNC contouring to make smooth, accurate profile features such as pockets, islands, and sides. However, all the proposed approaches only focused on the approximation errors and the biarc number, not on the radius of the individual fitting arc; so it could be smaller than the cutting tool, which would cause gouging during machining. This work, based on the tool radius pre-determined by the minimum size of the concavities of the design profile, proposes a new approach to approximating the profile with a G1 biarc curve in order to make smooth, accurate, and non-gouged profile features using CNC contouring. The significant new contribution of this work is a new mechanism that ensures all the concave arcs of the fitting curve are larger than the pre-determined tool and the fitting errors meet the specified tolerance. This approach can promote the use of G1 biarc tool paths in the manufacturing industry to make high precision profile features.


2014 ◽  
Vol 2 (2) ◽  
Author(s):  
Diego Alejandro Neira Moreno

El estudio de las variables y efectos derivados del mecanizado provee herramientas de conocimiento tendientes a optimizar el uso de las herramientas y los procedimientos de maquinado industrial. Este artículo de reflexión aborda el uso de los dispositivos de interrupción súbita (DIS) como herramientas de obtención de raíces de viruta para la investigación científica del mecanizado industrial, y para el estudio de los efectos derivados de la interacción entre las herramientas de corte y el material de trabajo, en función de los cambios microestructurales del material de trabajo, dependientes de la temperatura producida y los esfuerzos mecánicos de la herramienta de corte durante el mecanizado. Mediante la reflexión se destaca la importancia de los DIS como instrumentos de investigación científica en la manufactura, ya que estos permiten obtener muestras de viruta para estudiar las variables incidentes en el maquinado y a partir de esta evidencia, proponer alternativas para optimizar la fabricación de piezas y la integridad de las herramientas empleadas en el proceso.AbstractThe study of the variables and effects derived from the machining processes brings the knowledge needed to optimize the use of machining tools and procedures. This article is an opinion piece about the use of quick stop devices (QSD) as a scientific research instrument in machining projects to obtain chip roots, to study the interaction phenomena between cutting tool and work piece material that depends on temperature and the mechanical forces produced by the cutting tool during the cutting process. This article deals about how important the QSD are as a research instruments in manufacture because with this instruments it is possible to analyze the machining variables, based on the evidences bring by the chip roots obtained with the instrument. It is possible to propose optimization alternatives in the manufacture of machined parts and the integrity of cutting tools.


Author(s):  
K. V. Diadiun

Providing an increase in the working capacity of a metal-cutting tool, it is possible to significantly increase the productivity of mechanized labor, thereby reducing the cost of purchasing a new tool and saving on other accompanying technological components. During the operation of the cutting tool, the main load is transferred to its working part, this, as a rule, leads to partial wear or complete destruction of the planes and cutting edges. There are a number of technologies for processing working surfaces, which provides them with additional strengthening, the most effective of which is the method of applying special coatings to the surface of the cutting tool. Taking into account the specifics of the processes of formation of coatings, they can be divided into three main groups [1]. The first group includes methods in which the formation of coatings is carried out mainly due to diffusion reactions between saturating elements and structures of the instrumental material. The second group includes methods of forming coatings by a complex mechanism. The third group includes methods of forming coatings due to chemical and plasma-chemical reactions of particle flux simultaneously in volumes of space immediately adjacent to the saturable surfaces of the instrumental base. One such technology is the CIB (condensation and ion bombardment) method, which is a physical deposition of coatings. The most characteristic feature of coatings produced by this method is the absence of a transition zone between the coating and the tool material. This makes it possible to obtain a complex of properties on the working surfaces of the tool without deteriorating its original properties. The article is devoted to the issues of increasing the efficiency of ion-plasma technologies through the development and implementation of an automated system for analyzing and controlling the mass balance of reagent gases under conditions of several gases supply. Thus, the improvement of the technology of coating the working surfaces of the cutting tool, namely, the effective control of the process of applying ion-plasma coatings with the introduction of an automated system for analyzing and controlling the mass balance of reagent gases under conditions of supplying several gases is an urgent task.


Author(s):  

The investigation results of the applied simulation modeling programs market from the point of view of the usage possibility and expediency at the development or optimization of technological processes on domestic machinebuilding enterprises are presented. The analysis of the technological processes features in machine-building, and in particular aircraft construction, at domestic enterprises is carried out. The production features of the metalconsuming products and semi-finished products from the point of view these processes simulation expediency are considered. The expediency of carrying out simulation modeling of machine-building production, which provides adequate analysis results at minimal costs in comparison with other modeling methods are shown. The main criteria for choosing of specific simulation software are given. Keywords mechanical engineering technologies; metal-intensive production; aircraft construction; deformation processing of metals and alloys; foundry; equipment productivity; optimal stocks of semi-finished products; insurance stocks; simulation modeling; visualiz


Author(s):  
Nirmal S Kalsi ◽  
Rakesh Sehgal ◽  
Vishal S. Sharma

Due to the increase in complexity and expectations of more reliable solutions for a problem, the importance of multi-objective problem solutions is increasing day by day. It can play a significant role in making a decision. In the present approach, many combinations of the optimization techniques are proposed by the researchers. These hybrid evolutionary methods integrate positive characteristics of different methods and show the advantage to reach global optimization. In this chapter, Taguchi method and the GRA (Grey Relation Analysis) technique are pronounced and used to optimize a multi-objective metal cutting process to yield maximum performance of tungsten carbide-cobalt cutting tool inserts in turning. L18 orthogonal array is selected to analyze the effect of cutting speed, feed rate, and depth of cut using cryogenically treated and untreated inserts. The performance is evaluated in terms of main cutting force, power consumption, tool wear, and material removal rate using main effect plots of S/N (Signal to Noise) ratios. This chapter indicates that the grey-based Taguchi technique is not only a novel, efficient, and reliable method of optimization, but also contributes to satisfactory solution for multi-machining objectives in the turning process. It is concluded that cryogenically treated cutting tool inserts perform better. However, the feed rate affects the process performance most significantly.


Sign in / Sign up

Export Citation Format

Share Document