scholarly journals Combustion of a frozen bi-dispersed aluminum-water suspension

2018 ◽  
Vol 243 ◽  
pp. 00023 ◽  
Author(s):  
Vasiliy Poryazov ◽  
Aleksey Krainov

This paper presents a combustion model of nano- and microsized aluminum mixture frozen in water. The model takes into account combustion of aluminum particles in water vapor, the motion of combustion products, the temperature and velocity differences between particles and gas. The obtained results of the combustion rate depending on pressure and mass ratio between dispersed Al powders are in good agreement with the experimental data described in scientific literature.

2000 ◽  
Vol 123 (4) ◽  
pp. 817-823 ◽  
Author(s):  
G. Klose ◽  
R. Schmehl ◽  
R. Meier ◽  
G. Maier ◽  
R. Koch ◽  
...  

The development of low-emission aero-engine combustors strongly depends on the availability of accurate and efficient numerical models. The prediction of the interaction between two-phase flow and chemical combustion is one of the major objectives of the simulation of combustor flows. In this paper, predictions of a swirl stabilized model combustor are compared to experimental data. The computational method is based on an Eulerian two-phase model in conjunction with an eddy dissipation (ED) and a presumed-shape-PDF (JPDF) combustion model. The combination of an Eulerian two-phase model with a JPDF combustion model is a novelty. It was found to give good agreement to the experimental data.


1983 ◽  
Vol 61 (4) ◽  
pp. 646-648
Author(s):  
Chien Chung ◽  
James J. Hogan ◽  
Hans H. Muleer

In our recent works, a model was developed to calculate many of the features of 232Th(p,X) reactions with incident proton energies to 100 MeV. The model reproduced many properties such as spallation excitation functions, total fission cross sections, the symmetric/asymmetric mass ratio, and fission charge dispersion data. In this work, the model approach is extended to consider the fission probability in 232Th(p,p′xnf) fission channels. A comparison of the results calculated from the model to the experimental data shows very good agreement, and again justifies the approach of the model.


Author(s):  
G. Klose ◽  
R. Schmehl ◽  
R. Meier ◽  
G. Meier ◽  
R. Koch ◽  
...  

The development of low emission aero engine combustors strongly depends on the availability of accurate and efficient numerical models. The prediction of the interaction between two-phase flow and chemical combustion is one of the major objectives of the simulation of combustor flows. In this paper, predictions of a swirl stabilized model combustor are compared to experimental data. The computational method is based on an Eulerian two-phase model in conjunction with an Eddy Dissipation (ED) and a presumed-shape-PDF (JPDF) combustion model. The combination of an Eulerian two-phase model with a JPDF combustion model is a novelty. It was found to give good agreement to the experimental data.


Author(s):  
Bruno Facchini ◽  
Giovanni Ferrara ◽  
Paolo Mazzilli

An application of a simplified combustion model to pollutant emissions prediction in gas turbines is presented here. A critical analysis of the Rizk and Mongia semi-analytical model is conducted, and some corrections are accomplished to obtain a better agreement with experimental data. Special attention is devoted to the temperature equation, which is carefully modified, and to the schematization of several kinds of combustors. The simulation of some conventional pollutant reduction techniques, such as inert injection or exhaust gases re-circulation, is conducted with this corrected model. The results show a good agreement with experimental data both in conventional, and in innovative combustors, like Lean-Premixed or Rich-Lean concepts. The model needs a very short computation time and is likely to allow a simultaneous solution of chemical and fluid-dynamic aspect of the combustor.


2016 ◽  
Vol 685 ◽  
pp. 85-89
Author(s):  
V.A. Poryazov ◽  
K.M. Moiseeva ◽  
Aleksey Yu. Krainov

The paper presents a mathematical model for combustion of a frozen nanosized aluminum suspension (ALICE), taking into account the combustion of aluminum in water vapor, the motion of combustion products, and the velocity lag of particles compared to gas. The model was formulated based on Belyaev’s approach to modeling the combustion of volatile fuels [1]. The burning rate calculated is in agreement with the experimental data on the ALICE burning rate and its variation with pressure.


Author(s):  
V Kosse

In conveyors utilizing the principle of semi-self-flowing transportation, parts are put on a surface moving in the lateral direction by means of vibration or on two rollers rotating in opposite directions. Advantages of the latter one are that parts can be supplied on demand and a very small angle of inclination is required (less than 3°). Formulae found in scientific literature for the velocity of transportation as a function of the roller velocity give large discrepancies with experimental results. Extensive experimental modelling allows the dependence of the frictional coefficient on the shape of parts and the contact angle to be established. A new mathematical model of the conveyor has been developed and a new formula for the velocity of transportation has been derived, which is in good agreement with experimental data.


2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


1977 ◽  
Vol 5 (1) ◽  
pp. 6-28 ◽  
Author(s):  
A. L. Browne

Abstract An analytical tool is presented for the prediction of the effects of changes in tread pattern design on thick film wet traction performance. Results are reported for studies in which the analysis, implemented on a digital computer, was used to determine the effect of different tread geometry features, among these being the number, width, and lateral spacing of longitudinal grooves and the angle of zigzags in longitudinal grooves, on thick film wet traction. These results are shown to be in good agreement with experimental data appearing in the literature and are used to formulate guidelines for tread groove network design practice.


2015 ◽  
Vol 11 (3) ◽  
pp. 3224-3228
Author(s):  
Tarek El-Ashram

In this paper we derived a new condition of formation and stability of all crystalline systems and we checked its validity andit is found to be in a good agreement with experimental data. This condition is derived directly from the quantum conditionson the free electron Fermi gas inside the crystal. The new condition relates both the volume of Fermi sphere VF andvolume of Brillouin zone VB by the valence electron concentration VEC as ;𝑽𝑭𝑽𝑩= 𝒏𝑽𝑬𝑪𝟐for all crystalline systems (wheren is the number of atoms per lattice point).


1982 ◽  
Vol 14 (4-5) ◽  
pp. 253-256
Author(s):  
N Sriramula ◽  
M Chaudhuri

An investigation was undertaken on the removal of a model virus, bacterial virus MS2 against Escherichia coli, by sand filtration using untreated, and alum or cationic polyelectrolyte treated media, and uncoagulated as well as alum coagulated influent. Data on discrete virus removal were satisfactorily accounted for by electrokinetic phenomena and diffusion. For virus in association with turbidity, filter coefficients computed from experimental data were in good agreement with those predicted by mechanical straining and gravity settling which were the dominant mechanisms for removal of the turbidity particles to which the viruses attached.


Sign in / Sign up

Export Citation Format

Share Document