scholarly journals A Semi-Analytical Approach to Emissions Prediction in Gas Turbine Combustors

Author(s):  
Bruno Facchini ◽  
Giovanni Ferrara ◽  
Paolo Mazzilli

An application of a simplified combustion model to pollutant emissions prediction in gas turbines is presented here. A critical analysis of the Rizk and Mongia semi-analytical model is conducted, and some corrections are accomplished to obtain a better agreement with experimental data. Special attention is devoted to the temperature equation, which is carefully modified, and to the schematization of several kinds of combustors. The simulation of some conventional pollutant reduction techniques, such as inert injection or exhaust gases re-circulation, is conducted with this corrected model. The results show a good agreement with experimental data both in conventional, and in innovative combustors, like Lean-Premixed or Rich-Lean concepts. The model needs a very short computation time and is likely to allow a simultaneous solution of chemical and fluid-dynamic aspect of the combustor.

Author(s):  
André Perpignan V. de Campos ◽  
Fernando L. Sacomano Filho ◽  
Guenther C. Krieger Filho

Gas turbines are reliable energy conversion systems since they are able to operate with variable fuels and independently from seasonal natural changes. Within that reality, micro gas turbines have been increasing the importance of its usage on the onsite generation. Comparatively, less research has been done, leaving more room for improvements in this class of gas turbines. Focusing on the study of a flexible micro turbine set, this work is part of the development of a low cost electric generation micro turbine, which is capable of burning natural gas, LPG and ethanol. It is composed of an originally automotive turbocompressor, a combustion chamber specifically designed for this application, as well as a single stage axial power turbine. The combustion chamber is a reversed flow type and has a swirl stabilized combustor. This paper is dedicated to the diagnosis of the natural gas combustion in this chamber using computational fluid dynamics techniques compared to measured experimental data of temperature inside the combustion chamber. The study emphasizes the near inner wall temperature, turbine inlet temperature and dilution holes effectiveness. The calculation was conducted with the Reynolds Stress turbulence model coupled with the conventional β-PDF equilibrium along with mixture fraction transport combustion model. Thermal radiation was also considered. Reasonable agreement between experimental data and computational simulations was achieved, providing confidence on the phenomena observed on the simulations, which enabled the design improvement suggestions and analysis included in this work.


2019 ◽  
Vol 113 ◽  
pp. 03002
Author(s):  
Carlo Alberto Niccolini Marmont Du Haut Champ ◽  
Fabrizio Stefani ◽  
Paolo Silvestri

The aim of the present work is to design a test rig suited to investigate the dynamic interaction between rotor and hydrodynamic journal bearings in micro gas turbines (microGT), i.e. with reference to small bearings (diameter in the order of ten millimeters). Particularly, the device is capable of measuring the journal location. Therefore, the journal motion due to rotor vibrations can be displayed, in order to assess performance as well as stiffness and damping of the bearings. The new test rig is based on Bently Nevada Rotor Kit (RK), but substantial modifications are carried out. Indeed, the relative radial clearance of the original RK bearings is about 2/100, while it is in the order of 1/1000 in industrial bearings. Therefore, the same RK bearings are employed in the new test rig, but a new shaft has been designed in order to reduce the original clearance. The new shaft enables us to study the bearing behaviour for different clearances, as it is equipped with interchangeable journals. The experimental data yielded by the new test rig are compared with numerical results. These are obtained by means of a suitable finite element (FEM) code developed by our research group. It allows the Thermo Elasto-HydroDynamic (TEHD) analysis of the bearing in static and dynamic conditions. In the present paper, bearing static performances are analysed in order to assess the reliability of the journal location predictions by comparing numerical and experimental results. Such comparisons are presented for both large and small clearance bearings of original and modified RK, respectively. Good agreement is found only for the modified RK equipped with small clearance bearings (relative radial clearance equal to 8/1000). Nevertheless, rotor alignment is quite difficult with small clearance bearings and a completely new test rig is designed for future experiments.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
J. Michael Owen

Ingress of hot gas through the rim seals of gas turbines can be modeled theoretically using the so-called orifice equations. In Part I of this two-part paper, the orifice equations were derived for compressible and incompressible swirling flows, and the incompressible equations were solved for axisymmetric rotationally induced (RI) ingress. In Part II, the incompressible equations are solved for nonaxisymmetric externally induced (EI) ingress and for combined EI and RI ingress. The solutions show how the nondimensional ingress and egress flow rates vary with Θ0, the ratio of the flow rate of sealing air to the flow rate necessary to prevent ingress. For EI ingress, a “saw-tooth model” is used for the circumferential variation of pressure in the external annulus, and it is shown that ε, the sealing effectiveness, depends principally on Θ0; the theoretical variation of ε with Θ0 is similar to that found in Part I for RI ingress. For combined ingress, the solution of the orifice equations shows the transition from RI to EI ingress as the amplitude of the circumferential variation of pressure increases. The predicted values of ε for EI ingress are in good agreement with the available experimental data, but there are insufficient published data to validate the theory for combined ingress.


Author(s):  
J. Michael Owen

Ingress of hot gas through the rim seals of gas turbines can be modelled theoretically using the so-called orifice equations. In Part 1 (ASME GT 2009-59121) of this two-part paper, the orifice equations were derived for compressible and incompressible swirling flow, and the incompressible equations were solved for axisymmetric rotationally-induced (RI) ingress. In Part 2, the incompressible equations are solved for non-axisymmetric externally-induced (EI) ingress and for combined EI and RI ingress. The solutions show how the nondimensional ingress and egress flow rates vary with Θ0, the ratio of the flow rate of sealing air to the flow rate necessary to prevent ingress. For EI ingress, a ‘saw-tooth model’ is used for the circumferential variation of pressure in the external annulus, and it is shown that ε, the sealing effectiveness, depends principally on Θ0; the theoretical variation of ε with Θ0 is similar to that found in Part 1 for RI ingress. For combined ingress, the solution of the orifice equations shows the transition from RI to EI ingress as the amplitude of the circumferential variation of pressure increases. The predicted values of ε for EI ingress are in good agreement with available experimental data, but there are insufficient published data to validate the theory for combined ingress.


Author(s):  
Zachary Harris ◽  
Joshua Bittle ◽  
Ajay Agrawal

Abstract Advanced engine design and alternative fuels present the possibility of fuel injection at purely supercritical conditions in diesel engines and gas turbines. The complex interactions that govern this phenomenon still need significant research for reliable modeling efforts. Boundary conditions for fuel injection are critical to accurate simulation. However, the flow inside the injector itself is often omitted to reduce the computational efforts, and thus, velocity, mass flux, or total pressure is specified at the injector exit (or domain inlet), often with an assumed top hat profile and assumed turbulence levels. Past studies have shown that such simplified inlet boundary treatment has minimal effects on the results for fuel injection in the compressed liquid phase. However, the validity of this approach at supercritical fuel injection conditions has not been assessed so far. In this study, comprehensive real-gas and binary fluid mixing models have been implemented for computational fluid dynamic (CFD) analysis of fuel-air mixing at supercritical conditions. The model is verified using prior CFD results from the literature. Next, the model is used to investigate the effects of the shape of axial velocity and mass fraction profiles at the inlet boundary with the goal to improve the comparison of predictions to experimental data. Results show that the boundary conditions have a significant effect on the predictions, and none of the cases match precisely with experimental data. The study reveals that the physical location of the inlet boundary might be difficult to infer correctly from the experiments and highlights the need for high-quality, repeatable measurements at supercritical conditions to support the development of relevant high-fidelity models for fuel-air mixing.


2021 ◽  
pp. 1-22
Author(s):  
Zachary Harris ◽  
Joshua Bittle ◽  
Ajay Agrawal

Abstract Advanced engine design and alternative fuels present the possibility of fuel injection at purely supercritical conditions in diesel engines and gas turbines. The complex interactions that govern this phenomenon still need significant research, particularly the boundary conditions for fuel injection are critical for accurate simulation. However, the flow inside the injector itself is often omitted to reduce the computational efforts, and thus, velocity, mass flux, or total pressure is specified at the injector exit (or domain inlet), often with simplified velocity profiles and turbulence levels. This simplified inlet boundary treatment has minimal effects on results for conventional fuel injection conditions, however, the validity of this approach at supercritical conditions has not been assessed. Comprehensive real-gas and binary fluid mixing models have been implemented for computational fluid dynamic (CFD) analysis of fuel-air mixing at supercritical conditions. The model is verified using prior CFD results from the literature. The model is used to investigate the effects of the shape of axial velocity and mass fraction profiles at the inlet boundary with the goal to improve the comparison of predictions to experimental data. Results show that the boundary conditions have a significant effect on the predictions, and none of the cases match precisely with experimental data. The study reveals that the physical location of the inlet boundary might be difficult to infer correctly from the experiments and highlights the need for high-quality, repeatable measurements at supercritical conditions to support the development of relevant high-fidelity models for fuel-air mixing.


Author(s):  
Francesco Fantozzi ◽  
Paolo Laranci ◽  
Michele Bianchi ◽  
Andrea De Pascale ◽  
Michele Pinelli ◽  
...  

Micro gas turbines could be profitably used, for distributed energy production, also exploiting low calorific value biomass-derived fuels, obtained by means of integrated pyrolysis and/or gasification processes. These synthesis gases show significant differences with respect to natural gas (in terms of composition, low calorific value, hydrogen content, tar and particulate matter content) that may turn into ignition problems, combustion instabilities, difficulties in emission control and fouling. CFD simulation of the combustion chamber is a key instrument to identify main criticalities arising when using these gases, in order to modify existing geometries and to develop new generation combustion chambers for use with low calorific value gases. This paper describes the numerical activity carried out to analyze the combustion process occurring inside an existing microturbine annular combustor. A CFD study of the combustion process performed with different computational codes is introduced and some preliminary results are reported in the paper. A comparison of results obtained with the different codes is provided, for the reference case of methane combustion. A first evaluation of the pollutant emissions and a comparison with the available experimental data is also provided in the paper, showing in particular a good matching of experimental data on NOx emissions at different load conditions. Moreover, the carried out investigation concerns the case of operation with a syngas fuel derived from pyrolysis of biomass and finally the case of syngas and natural gas co-firing. This combustion condition is simulated with a simple reduced chemical kinetic scheme, in order to assess only the key issues rising with this fuel in comparison with the case of methane combustion. The analysis shows that in case of syngas operation the combustor internal temperature hot spots are reduced and the primary zone flame tends to stabilize closer to the injector, with possible implications on the emission release.


2018 ◽  
Vol 243 ◽  
pp. 00023 ◽  
Author(s):  
Vasiliy Poryazov ◽  
Aleksey Krainov

This paper presents a combustion model of nano- and microsized aluminum mixture frozen in water. The model takes into account combustion of aluminum particles in water vapor, the motion of combustion products, the temperature and velocity differences between particles and gas. The obtained results of the combustion rate depending on pressure and mass ratio between dispersed Al powders are in good agreement with the experimental data described in scientific literature.


2000 ◽  
Vol 123 (4) ◽  
pp. 817-823 ◽  
Author(s):  
G. Klose ◽  
R. Schmehl ◽  
R. Meier ◽  
G. Maier ◽  
R. Koch ◽  
...  

The development of low-emission aero-engine combustors strongly depends on the availability of accurate and efficient numerical models. The prediction of the interaction between two-phase flow and chemical combustion is one of the major objectives of the simulation of combustor flows. In this paper, predictions of a swirl stabilized model combustor are compared to experimental data. The computational method is based on an Eulerian two-phase model in conjunction with an eddy dissipation (ED) and a presumed-shape-PDF (JPDF) combustion model. The combination of an Eulerian two-phase model with a JPDF combustion model is a novelty. It was found to give good agreement to the experimental data.


2015 ◽  
Vol 25 (5) ◽  
pp. 1064-1088 ◽  
Author(s):  
Alain Fossi ◽  
Alain DeChamplain ◽  
Benjamin Akih-Kumgeh

Purpose – The purpose of this paper is to numerically investigate the three-dimensional (3D) reacting turbulent two-phase flow field of a scaled swirl-stabilized gas turbine combustor using the commercial computational fluid dynamic (CFD) software ANSYS FLUENT. The first scope of the study aims to explicitly compare the predictive capabilities of two turbulence models namely Unsteady Reynolds Averaged Navier-Stokes and Scale Adaptive Simulation for a reasonable trade-off between accuracy of results and global computational cost when applied to simulate swirl-stabilized spray combustion. The second scope of the study is to couple chemical reactions to the turbulent flow using a realistic chemistry model and also to model the local chemical non-equilibrium(NEQ) effects caused by turbulent strain such as flame stretching. Design/methodology/approach – Standard Eulerian and Lagrangian formulations are used to describe both gaseous and liquid phases, respectively. The computing method includes a two-way coupling in which phase properties and spray source terms are interchanging between the two phases within each coupling time step. The fuel used is liquid jet-A1 which is injected in the form of a polydisperse spray and the droplet evaporation rate is calculated using the infinite conductivity model. One-component (n-decane) and two-component fuels (n-decane+toluene) are used as jet-A1 surrogates. The combustion model is based on the mean mixture fraction and its variance, and a presumed-probability density function is used to model turbulent-chemistry interactions. The instantaneous thermochemical state necessary for the chemistry tabulation is determined by using initially the equilibrium (EQ) assumption and thereafter, detailed NEQ calculations through the steady flamelets concept. The combustion chemistry of these surrogates is represented through a reduced chemical kinetic mechanism (CKM) comprising 1,045 reactions among 139 species, derived from the detailed jet-A1 surrogate model, JetSurf 2.0 using a sensitivity based method, Alternate Species Elimination. Findings – Numerical results of the gas velocity, the gas temperature and the species molar fractions are compared with their experimental counterparts obtained from a steady state flame available in the literature. It is observed that, SAS coupled to the tabulated flamelet-based chemistry, predicts reasonably the main flame trends, while URANS even provided with the same combustion model and computing resources, leads to a poor prediction of the global flame trends, emphasizing the asset of a proper resolution when simulating spray flames. Research limitations/implications – The steady flamelet model even coupled with a robust turbulence model does not reproduce accurately the trend of species with slow oxidation kinetics such as CO and H2, because of the restrictiveness of the solutions space of flamelet equations and the assumption of unity Lewis for all species. Practical implications – This work is adding a contribution for spray flame modeling and can be seen as an extension to the significant efforts for the modeling of gaseous flames using robust turbulence models coupled with the tabulated flamelet-based chemistry approach to considerably reduce computing cost. The exclusive use of a commercial CFD code widely used in the industry allows a direct application of this simulation approach to industrial configurations while keeping computing cost reasonable. Originality/value – This study is useful to engineers interested in designing combustors of gas turbines and others combustion systems fed with liquid fuels.


Sign in / Sign up

Export Citation Format

Share Document