scholarly journals Linear Quadratic Optimal Controller Design for Constant Downstream Water-Level PI Feedback Control of Open-Canal Systems

2018 ◽  
Vol 246 ◽  
pp. 01056 ◽  
Author(s):  
Ke Zhong ◽  
Guanghua Guan ◽  
Zhonghao Mao ◽  
Wenjun Liao ◽  
Changcheng Xiao ◽  
...  

The key point of PI feedback control is how to design appropriate controller parameters. This paper combined the linear quadratic optimizing control theory to design an online controller for constant downstream water-level operation which could respond to different working condition properly and rapidly avoiding complex controller parameters adjusting. Based on the Integrator-Delay (ID) model simplified from Saint-Venant Equations, we established the discretized linear time invariant system of canals. Then transferred it into the state-space equations and obtained the state-feedback equation. Water level deviations and flow rate increments were chosen to form the objective function and this paper recommended values of Q and R weight matrices among it should be set according to the optimum quadratic form indicators correspondingly. This controller was applied to two practical canal systems which had diverse scales. Results showed the system under control quickly regained stability; optimizing the objective function with recommended weight matrices could well balance demands on water level deviations and flow rate changes; dynamic performances of water movements and gate movements were acceptable. Through simulations, we preliminarily proved the practicability of this online PI controller implementing LQR. This work proposed an available solutions for the design and operation of water conveyance systems around the world.

2021 ◽  
Vol 11 (4) ◽  
pp. 1717
Author(s):  
Gilberto Gonzalez Avalos ◽  
Noe Barrera Gallegos ◽  
Gerardo Ayala-Jaimes ◽  
Aaron Padilla Garcia

The direct determination of the steady state response for linear time invariant (LTI) systems modeled by multibond graphs is presented. Firstly, a multiport junction structure of a multibond graph in an integral causality assignment (MBGI) to get the state space of the system is introduced. By assigning a derivative causality to the multiport storage elements, the multibond graph in a derivative causality (MBGD) is proposed. Based on this MBGD, a theorem to obtain the steady state response is presented. Two case studies to get the steady state of the state variables are applied. Both cases are modeled by multibond graphs, and the symbolic determination of the steady state is obtained. The simulation results using the 20-SIM software are numerically verified.


2020 ◽  
Vol 65 (4) ◽  
pp. 725-745
Author(s):  
Chao Lu ◽  
Chao Lu ◽  
Xuejun J Wang ◽  
Xuejun J Wang ◽  
Yi Wu ◽  
...  

Пусть $X_t=\sum_{j=-\infty}^{\infty}A_j\varepsilon_{t-j}$ - зависимый линейный процесс, где $\{\varepsilon_n, n\in \mathbf{Z}\}$ - последовательность $m$-обобщенных отрицательно зависимых ($m$-END) случайных величин с нулевым средним, которая стохастически доминируется случайной величиной $\varepsilon$, и пусть $\{A_n, n\in \mathbf{Z}\}$ - другая последовательность случайных величин с нулевым средним, обладающая свойством $m$-END. При подходящих условиях установлена полная моментная сходимость для зависимых линейных процессов. В частности, приведены достаточные условия полной моментной сходимости. В качестве приложения исследуется сходимость наблюдателей состояния для линейных стационарных систем.


Author(s):  
Shusheng Zang ◽  
Jaqiang Pan

The design of a modern Linear Quadratic Regulator (LQR) is described for a test steam injected gas turbine (STIG) unit. The LQR controller is obtained by using the fuel flow rate and the injected steam flow rate as the output parameters. To meet the goal of the shaft speed control, a classical Proportional Differential (PD) controller is compared to the LQR controller design. The control performance of the dynamic response of the STIG plant in the case of rejection of load is evaluated. The results of the computer simulation show a remarkable improvement on the dynamic performance of the STIG unit.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Shinji Hara ◽  
Toni Bakhtiar ◽  
Masaaki Kanno

This paper is concerned with the inherentℋ2tracking performance limitation of single-input and multiple-output (SIMO) linear time-invariant (LTI) feedback control systems. The performance is measured by the tracking error between a step reference input and the plant output with additional penalty on control input. We employ the plant augmentation strategy, which enables us to derive analytical closed-form expressions of the best achievable performance not only for discrete-time system, but also for continuous-time system by exploiting the delta domain version of the expressions.


2002 ◽  
Vol 8 (5) ◽  
pp. 659-671 ◽  
Author(s):  
Mosaad Mosleh ◽  
Amier Al-Ali

A linear time invariant (LTI) model of a marine diesel engine is presented. The effect of the discontinuity of the fuel injection into the cylinders and the injection period is considered. The proposed discrete model consists of a sampler and zero-order-hold mechanism, representing the fuel injection process. The design of the discrete controller is based on the pole assignment of the characteristic polynomial of the closed-loop transfer function with the goal of achieving zero steady-state error, and satisfying other design specifications. A numerical example illustrating the characteristic performance of a two stroke marine diesel engine is presented.


2018 ◽  
Vol 15 (3) ◽  
pp. 172988141877684 ◽  
Author(s):  
Sumian Song ◽  
Chong Tang ◽  
Zidong Wang ◽  
Yinan Wang ◽  
Gangfeng Yan

This article proposes an active disturbance rejection controller design scheme to stabilize the unstable limit cycle of a compass-like biped robot. The idea of transverse coordinate transformation is applied to form the control system based on angular momentum. With the linearization approximation, the limit cycle stabilization problem is simplified into the stabilization of an linear time-invariant system, which is known as transverse coordinate control. In order to solve the problem of poor adaptability caused by linearization approximation, we design an active disturbance rejection controller in the form of a serial system. With the active disturbance rejection controller, the system error can be estimated by extended state observer and compensated by nonlinear state error feedback, and the unstable limit cycle can be stabilized. The numerical simulations show that the control law enhances the performance of transverse coordinate control.


2003 ◽  
Vol 125 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Guang-Hong Yang ◽  
Jian Liang Wang

This paper is concerned with the nonfragile H∞ controller design problem for linear time-invariant systems. The controller to be designed is assumed to have norm-bounded uncertainties. Design methods are presented for dynamic output (measurement) feedback. The designed controllers with uncertainty (i.e. nonfragile controllers) are such that the closed-loop system is quadratically stable and has an H∞ disturbance attenuation bound. Furthermore, these robust controllers degenerate to the standard H∞ output feedback control designs, when the controller uncertainties are set to zero.


Sign in / Sign up

Export Citation Format

Share Document