scholarly journals Optimisation Studies of Cylinder Water Channel Geometry in an Internal Combustion Engine

2019 ◽  
Vol 252 ◽  
pp. 04003
Author(s):  
Michał Biały ◽  
Konrad Pietrykowski

This paper presents an analysis of the results of simulation studies of optimisation of water channel geometry placed in the head of an opposed-piston three-cylinder engine. For this purpose, six computation cases were prepared, differing in shape and cross-section field of channels located along the axis of one of the cylinders. The research was conducted by means of Ansys Flutent software. The conditions of initiation and boundary have been obtained from previous studies using AVL Boost RT software. A fixed temperature was assumed on the cylinder wall and a fixed temperature was assumed for the coolant at the inlet to the model. The studies were carried out for the model of the designed engine, which carries out a two-stroke diesel cycle. The engine will be equipped with direct injection of diesel fuel. On the basis of the conducted analysis of the test results, the flow velocity distributions and distributions of speed fields of the working medium in the critical cross-sections, the distribution of temperature and heat flow fields were prepared. Pressure drops and heat dissipation were also determined for individual models. This provided the basis for the determination of the influence of the rib's transverse geometry shape on the amount of heat received from the cylinder's smoothing walls.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 245
Author(s):  
Anja Fink ◽  
Oliver Nett ◽  
Simon Schmidt ◽  
Oliver Krüger ◽  
Thomas Ebert ◽  
...  

The H2 internal combustion engine (ICE) is a key technology for complete decarbonization of the transport sector. To match or exceed the power density of conventional combustion engines, H2 direct injection (DI) is essential. Therefore, new injector concepts that meet the requirements of a H2 operation have to be developed. The macroscopic free stream behavior of H2 released from an innovative fluidic oscillating nozzle is investigated and compared with that of a conventional multi-hole nozzle. This work consists of H2 flow measurements and injection tests in a constant volume chamber using the Schlieren method and is accompanied by a LES simulation. The results show that an oscillating H2 free stream has a higher penetration velocity than the individual jets of a multi-hole nozzle. This behavior can be used to inject H2 far into the combustion chamber in the vertical direction while the piston is still near bottom dead center. As soon as the oscillation of the H2 free stream starts, the spray angle increases and therefore H2 is also distributed in the horizontal direction. In this phase of the injection process, spray angles comparable to those of a multi-hole nozzle are achieved. This behavior has a positive effect on H2 homogenization, which is desirable for the combustion process.



2018 ◽  
Author(s):  
◽  
Muslim Muhsin Ali

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The main object of this dissertation is to study the dynamic analysis of an inline internal combustion engine. This dissertation presents the kinematics and kinetic analyses of an inline internal combustion engine crank mechanism, the dynamic torque imbalance and foundation forces for a single-piston and multi-piston engines are studied as well. The objectives of this dissertation are to explore the inertial-torque characteristics and foundation forces of an inline, internal combustion engine with connecting-rod joints that are evenly spaced about the centerline of the crankshaft, and to evaluate the goodness of a mass approximation that is customarily used in machine design textbooks. In this dissertation the number of pistons within the internal combustion engine is varied from 1 to 8. In order to generalize the results, the reaction force between the ground and the crank in the x-direction and y-direction equations are nondimensionalized and shown to depend upon only six nondimensional groups, all related to the mass and geometry properties of the connecting rod and crank while the reaction force between the connecting rod and the piston in the x-direction y-direction, reaction force between the crank and the connecting rod in the x-direction y-direction, reaction force between the piston and the cylinder wall, and the inertial-torque equations are nondimensionalized all related to the mass and geometry properties of the connecting rod. As shown in this dissertation, the largest torque imbalance is exhibited by a 2-piston engine. The next largest torque imbalance is exhibited by a 3-piston engine, followed by a single-piston engine (this is not monotonic). The largest foundation forces are exhibited by a single-piston engine. The next largest foundation forces are exhibited by a 2-piston engine, followed by a 3e-piston engine, and that a dramatic reduction in the foundation forces and torque imbalance may be obtained by using 4 or more pistons in the design, when using as many as 8 pistons the foundation forces and torque imbalance essentially vanishes. It should be observed that the mass approximation captures 100 percent of the variability of the actual torque imbalance for engines that are designed with an odd number of pistons equal to or greater than three. The mass approximation captures 100 percent of the variability of the actual reaction force between the piston and cylinder wall for engines that are designed with single-piston and multi-pistons. The mass approximation captures 100 percent of the variability of the actual reaction force against piston pin for engines that are designed with single-piston. It is also shown in this dissertation that the customary mass approximations for the connecting rod may be used to simplify the analysis for all engine designs without a significant loss of modeling accuracy.



2014 ◽  
Vol 535 ◽  
pp. 333-339
Author(s):  
Yue Chen ◽  
Lin Lv ◽  
Jie Shen

All future engine developments must consider the primary task of achieving the required emission levels. An important step towards the development of combustion engines is the optimization of the flow in the intake ports. The charging movement in the combustion chamber, which is generated by the intake flow, considerably influences the quality of the combustion engine. In this paper, steady CFD analysis were applied to different structures of double-tangent-port. The swirl ratio can be improved while flow coefficient remains unchanged if port eccentricity is 34.4 mm. By defining three characteristic parameters, the speed non-uniformity index, standard deviation and mixture concentration standard deviation and equivalent ratio range, quantitatively describing the combustion process in cylinder, and then compared with transient CFD three-dimensional contours, we can see that characteristic parameters can be more accurate and comprehensive in analyzing the influence of inlet structure of soot formation. Effects of different intake ports on fuel-air mixing in a turbocharged diesel direct injection engine during intake and compression strokes are analyzed. It turns out that the optimized double-tangent-port has the highest uniformity of velocity, in the meanwhile, air/fuel mixing is relatively uniform. On the other hand, mixed-port and double-helix-port can cause uneven flow field which is bad for combustion, even though the swirl ratio can increase largely. Finally, the simulation results show that soot emissions of the optimized double-tangent-port have significantly lower levels, at 2200 r/min under full load.



Author(s):  
Volodumur Suvolapov ◽  
◽  
Andriy Novitskiy ◽  
Vasul Khmelevski ◽  
Oleksandr Bustruy ◽  
...  

The article analyzes scientific publications and literary studies of heat transfer processes in cylinders of internal combustion engines. The research of temperature fields in engines during their operation at different modes with the use of a software package and calculation module is presented. The results of modeling and thermo-metering in homogeneous and laminated engine cylinder liners are analyzed. Graphic dependencies and temperature distribution by cylinder wall thickness at maximum and minimum temperature on cylinder surface are given. On the basis of researches it is established that at laminating and pressing of inserts temperature fields in the engine cylinder change, temperature on an internal surface of the cylinder increases at laminating on 6,5 °С, and at pressing - on 4,5 °С. This is explained by the fact that the contact layer during plastification is in the zone of non-stationary mode, and when pressing the contact layer is in the zone of stationary mode and thus increases the thickness of the cylinder by 2 millimeters. It is established that the difference of minimum and maximum temperatures on the inner surface of the cylinder practically remains the same as that of a homogeneous cylinder. Thus, modeling becomes the most effective scientific tool in the development and implementation of long-term evaluation of options for improving ICE.





2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Satish G. Kandlikar

In an effort to increase processor speeds, 3D IC architecture is being aggressively pursued by researchers and chip manufacturers. This architecture allows extremely high level of integration with enhanced electrical performance and expanded functionality, and facilitates realization of VLSI and ULSI technologies. However, utilizing the third dimension to provide additional device layers poses thermal challenges due to the increased heat dissipation and complex electrical interconnects among different layers. The conflicting needs of the cooling system requiring larger flow passage dimensions to limit the pressure drop, and the IC architecture necessitating short interconnect distances to reduce signal latency warrant paradigm shifts in both of their design approach. Additional considerations include the effects due to temperature nonuniformity, localized hot spots, complex fluidic connections, and mechanical design. This paper reviews the advances in 3D IC cooling in the last decade and provides a vision for codesigning 3D IC architecture and integrated cooling systems. For heat fluxes of 50–100 W/cm2 on each side of a chip in a 3D IC package, the current single-phase cooling technology is projected to provide adequate cooling, albeit with high pressure drops. For future applications with coolant surface heat fluxes from 100 to 500 W/cm2, significant changes need to be made in both electrical and cooling technologies through a new level of codesign. Effectively mitigating the high temperatures surrounding local hot spots remains a challenging issue. The codesign approach with circuit, software and thermal designers working together is seen as essential. The through silicon vias (TSVs) in the current designs place a stringent limit on the channel height in the cooling layer. It is projected that integration of wireless network on chip architecture could alleviate these height restrictions since the data bandwidth is independent of the communication lengths. Microchannels that are 200 μm or larger in depth are expected to allow dissipation of large heat fluxes with significantly lower pressure drops.



Author(s):  
Tomoyuki Hosaka ◽  
Taisuke Sugii ◽  
Eiji Ishii ◽  
Kazuhiro Oryoji ◽  
Yoshihiro Sukegawa

The improved fuel economy and low pollutant emissions are highly demanded for internal combustion engines. Gasoline Direct Injection (GDI) engine is the one of promising devices for highly efficient engine. However, GDI engines generally tend to emit more Particulate Matter (PM) than Port Fuel Injection (PFI) engine because the fuel sprayed from the injector can easily attach to the wall, which is the major origin of PM. Therefore, the precise analysis of the fuel/air mixture formation and the prediction of emissions are required. From the view of industrial use, Computational Fluid Dynamics (CFD) becomes a necessary tool for the various analyses including the fuel/air mixture formation, spray attachment on the cylinder wall, the in-cylinder turbulence formation, the combustion and emission etc. In our previous study, the flow and spray simulation in internal combustion engine has been conducted using OpenFOAM®, the open-source CFD toolbox. Since the engine involves the dynamic motion such as valve and piston, the morphing and mapping approach was employed. Furthermore, by virtue of open-source code, we have developed the methodology of the hybrid simulation from the internal nozzle flow to the fuel/air mixture in order to take into account detailed breakup process nearby injector nozzle. We expand the above research to the combustion simulation. For the combustion model, the Hyperbolic Tangent Approximation (HTA) model is adopted. The HTA model has a simple form of equation and one can easily implement; moreover, the HTA model has the following features: 1. capability of both laminar and turbulent flow, 2. the clearness of analytical derivation based on the functional approximation of the reaction progress variable distribution in a one-dimensional laminar flame. In the current study, the premixed flame is studied on a gasoline combustion engine. The simulations for in-cylinder engine are conducted with different Air/Fuel (A/F) ratio conditions, and the results are compared with the experimental results. The in-cylinder pressure agrees well with experimental results and the validity of the current methodology is confirmed.



2014 ◽  
Author(s):  
Terry Yan ◽  
Jason Yobby ◽  
Ravindra Vundavilli

The analysis for optimal design of an air-cooled internal combustion engine cooling fin array by using genetic algorithms (GA) is presented in this study. Genetic Algorithms are robust, stochastic search techniques which are also used for optimizing highly complex problems. In this study, the fin array is of the traditional circular fin type, which is subject to ambient convective heat transfer. The parameters (degrees of freedom) selected for the analysis include the cylinder wall thickness-to-radius ratio, fin thickness, fin length, the number of fins, and the local heat transfer coefficient. By using a single objective GA procedure, the heat transfer through the fin arrays is set as the objective function to be optimized with each parameter varied within the physical ranges. Proper population size is selected and the mutations, cross-over and selection are conducted in the GA procedure to arrive at the optimal set of parameters after a certain number of generations. The GA proves to be an effective optimization method in the thermal system component designs when the number of independent variables is large.



2019 ◽  
Vol 44 (52) ◽  
pp. 28342-28356 ◽  
Author(s):  
A. Thawko ◽  
H. Yadav ◽  
A. Eyal ◽  
M. Shapiro ◽  
L. Tartakovsky


Sign in / Sign up

Export Citation Format

Share Document