scholarly journals The simulation model of the grapple loader operation

2019 ◽  
Vol 252 ◽  
pp. 05021
Author(s):  
Karol Tucki ◽  
Anna Bączyk ◽  
Remigiusz Mruk ◽  
Izabela Wielewska ◽  
Piotr Radziszewski

The main objective of the study was to develop a simulation model for the operation of the T-214 CYKLOP grapple loader using the MATLAB package. The created model allowed assessment of the behaviour of the real object in the operating conditions under variable loads and in the system overload. The simulation of the boom operation was carried out in four combinations: (1) at power take-off speed = 1000 rpm without load and (2) at 1000 kg load, (4) at power take-off speed = 540 rpm without load and (4) at 1000 kg load. The results show that the system works properly. The correct functioning of the system is evidenced by the fact that changes in force and acceleration occur on both pistons when only one of the cylinders is operating (the cylinder at rest acts as a shock absorber for the forces resulting from the inertia of the arms and the load). Apart from the increased forces on the pistons of the hydraulic cylinders, the additional load resulted in a slight reduction in acceleration values and an increase in the time needed to change the arm tilt angles.

Author(s):  
Nikolay Shchurov ◽  
◽  
Pavel Bakholdin ◽  
Dmitry Bakholdin ◽  
◽  
...  

The creation of an electromagnetic shock absorber system is necessary taking into account such parameters of the vehicle and operating conditions as the quality of the roadway, the grades, and the weight and size of the vehicle. A mathematical simulation model of the vehicle was developed to determine energy indicators in various road sections. The MATLAB Simulink programming environment was chosen to create the most practical and functional simulation model. A number of experiments were carried out using various parameters of the vehicle, types of roadways and driving cycles. Simulation results allow obtaining basic characteristics of electromagnetic damper of the selected vehicle, on the basis of which a linear electromagnetic damper shock absorber will be calculated. System energy efficiency was determined when using a vehicle on roads having a different road surface evenness index.


2016 ◽  
Vol 37 (1) ◽  
pp. 277-296 ◽  
Author(s):  
Mieczysław Dziubiński ◽  
Mieczysław Plich ◽  
Artur Drozd

Abstract The main purpose of the work was to develop the analytical simulation model for the starting system and to verify it on the real object. The reliability analysis of the starting system connected with operating use of mechanical and electric elements has been carried out in the developed model. It was a novelty in the conducted examination to use the LabView software for the registration of electric signals (current and voltage) and mechanical ones (rotational speed and torque).


2020 ◽  
Vol 13 (2) ◽  
pp. 126-140
Author(s):  
Jing Gan ◽  
Xiaobin Fan ◽  
Zeng Song ◽  
Mingyue Zhang ◽  
Bin Zhao

Background: The power performance of an electric vehicle is the basic parameter. Traditional test equipment, such as the expensive chassis dynamometer, not only increases the cost of testing but also makes it impossible to measure all the performance parameters of an electric vehicle. Objective: A set of convenient, efficient and sensitive power measurement system for electric vehicles is developed to obtain the real-time power changes of hub-motor vehicles under various operating conditions, and the dynamic performance parameters of hub-motor vehicles are obtained through the system. Methods: Firstly, a set of on-board power test system is developed by using virtual instrument (Lab- VIEW). This test system can obtain the power changes of hub-motor vehicles under various operating conditions in real-time and save data in real-time. Then, the driving resistance of hub-motor vehicles is analyzed, and the power performance of hub-motor vehicles is studied in depth. The power testing system is proposed to test the input power of both ends of the driving motor, and the chassis dynamometer is combined to test so that the output efficiency of the driving motor can be easily obtained without disassembly. Finally, this method is used to carry out the road test and obtain the vehicle dynamic performance parameters. Results: The real-time current, voltage and power, maximum power, acceleration time and maximum speed of the vehicle can be obtained accurately by using the power test system in the real road experiment. Conclusion: The maximum power required by the two motors reaches about 9KW, and it takes about 20 seconds to reach the maximum speed. The total power required to maintain the maximum speed is about 7.8kw, and the maximum speed is 62km/h. In this article, various patents have been discussed.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2042
Author(s):  
Wojciech Kacalak ◽  
Igor Maciejewski ◽  
Dariusz Lipiński ◽  
Błażej Bałasz

A simulation model and the results of experimental tests of a vibration generator in applications for the hot-dip galvanizing process are presented. The parameters of the work of the asynchronous motor forcing the system vibrations were determined, as well as the degree of unbalance enabling the vibrations of galvanized elements weighing up to 500 kg to be forced. Simulation and experimental tests of the designed and then constructed vibration generator were carried out at different intensities of the unbalanced rotating mass of the motor. Based on the obtained test results, the generator operating conditions were determined at which the highest values of the amplitude of vibrations transmitted through the suspension system to the galvanized elements were obtained.


2021 ◽  
Vol 11 (1) ◽  
pp. 377
Author(s):  
Michele Scarpiniti ◽  
Enzo Baccarelli ◽  
Alireza Momenzadeh ◽  
Sima Sarv Ahrabi

The recent introduction of the so-called Conditional Neural Networks (CDNNs) with multiple early exits, executed atop virtualized multi-tier Fog platforms, makes feasible the real-time and energy-efficient execution of analytics required by future Internet applications. However, until now, toolkits for the evaluation of energy-vs.-delay performance of the inference phase of CDNNs executed on such platforms, have not been available. Motivated by these considerations, in this contribution, we present DeepFogSim. It is a MATLAB-supported software toolbox aiming at testing the performance of virtualized technological platforms for the real-time distributed execution of the inference phase of CDNNs with early exits under IoT realms. The main peculiar features of the proposed DeepFogSim toolbox are that: (i) it allows the joint dynamic energy-aware optimization of the Fog-hosted computing-networking resources under hard constraints on the tolerated inference delays; (ii) it allows the repeatable and customizable simulation of the resulting energy-delay performance of the overall Fog execution platform; (iii) it allows the dynamic tracking of the performed resource allocation under time-varying operating conditions and/or failure events; and (iv) it is equipped with a user-friendly Graphic User Interface (GUI) that supports a number of graphic formats for data rendering. Some numerical results give evidence for about the actual capabilities of the proposed DeepFogSim toolbox.


2021 ◽  
Author(s):  
Geng Teng ◽  
Laijie Chen ◽  
Xin Shen ◽  
Hua Ouyang ◽  
Yubo Zhu ◽  
...  

Abstract The centrifugal compressor is the core component of the supercritical carbon dioxide (SCO2) power cycle. It is essential to carry out component-level experimental research on it and test the working characteristics of the compressor and its auxiliary equipment. Building an accurate closed-loop simulation model of closed SCO2 compression loop is a necessary preparation for selecting loop key parameters and establishing system control strategy, which is also an important prerequisite for the stable operation of compressor under test parameters. In this paper, the thermodynamic model of compressor, pre-cooler, orifice plate and other components in supercritical CO2 compression test system is studied, and the simulation model of compression test system is established. Moreover, based on the system enthalpy equations and physical property model of real gas, the compressor, pre-cooler and other components in the test loop are preliminarily designed by using the thermodynamic model of components. Since the operating conditions are in the vicinity of the critical point, when the operating conditions change slightly, the physical properties of the working fluid will change significantly, which might have a greater impact on the operating performance of the system. So the operating performance and the parameter changes of key nodes in the test loop under different operating conditions are calculated, which will provide theoretical guidance for the construction of subsequent experimental loops.


2021 ◽  
Author(s):  
Mohamed Ibrahim Mohamed ◽  
Ahmed Mahmoud El-Menoufi ◽  
Eman Abed Ezz El-Regal ◽  
Ahmed Mohamed Ali ◽  
Khaled Mohamed Mansour ◽  
...  

Abstract Field development planning of gas condensate fields using numerical simulation has many aspects to consider that may lead to a significant impact on production optimization. An important aspect is to account for the effects of network constraints and process plant operating conditions through an integrated asset model. This model should honor proper representation of the fluid within the reservoir, through the wells and up to the network and facility. Obaiyed is one of the biggest onshore gas field in Egypt, it is a highly heterogeneous gas condensate field located in the western desert of Egypt with more than 100 wells. Three initial condensate gas ratios are existing based on early PVT samples and production testing. The initial CGRs as follows;160, 115 and 42 STB/MMSCF. With continuous pressure depletion, the produced hydrocarbon composition stream changes, causing a deviation between the design parameters and the operating parameters of the equipment within the process plant, resulting in a decrease in the recovery of liquid condensate. Therefore, the facility engineers demand a dynamic update of a detailed composition stream to optimize the system and achieve greater economic value. The best way to obtain this compositional stream is by using a fully compositional integrated asset model. Utilizing a fully compositional model in Obaiyed is challenging, computationally expensive, and impractical, especially during the history match of the reservoir numerical model. In this paper, a case study for Obaiyed field is presented in which we used an alternative integrated asset modeling approach comprising a modified black-oil (MBO) that results in significant timesaving in the full-field reservoir simulation model. We then used a proper de-lumping scheme to convert the modified black oil tables into as many components as required by the surface network and process plant facility. The results of proposed approach are compared with a fully compositional approach for validity check. The results clearly identified the system bottlenecks. The model can be used to propose the best tie-in location of future wells in addition to providing first-pass flow assurance indications throughout the field's life and under different network configurations. The model enabled the facility engineers to keep the conditions of the surface facility within the optimized operating envelope throughout the field's lifetime.


Author(s):  
Swati Saxena ◽  
Ramakrishna Mallina ◽  
Francisco Moraga ◽  
Douglas Hofer

This paper is presented in two parts. Part I (Tabular fluid properties for real gas analysis) describes an approach to creating a tabular representation of the equation of state that is applicable to any fluid. This approach is applied to generating an accurate and robust tabular representation of the RefProp CO2 properties. Part II (this paper) presents numerical simulations of a low flow coefficient supercritical CO2 centrifugal compressor developed for a closed loop power cycle. The real gas tables presented in part I are used in these simulations. Three operating conditions are simulated near the CO2 critical point: normal day (85 bar, 35C), hot day (105 bar, 50 C) and cold day (70 bar, 20C) conditions. The compressor is a single stage overhung design with shrouded impeller, 155 mm impeller tip diameter and a vaneless diffuser. An axial variable inlet guide vane (IGV) is used to control the incoming swirl into the impeller. An in-house three-dimensional computational fluid dynamics (CFD) solver named TACOMA is used with real gas tables for the steady flow simulations. The equilibrium thermodynamic modeling is used in this study. The real gas effects are important in the desired impeller operating range. It is observed that both the operating range (minimum and maximum volumetric flow rate) and the pressure ratio across the impeller are dependent on the inlet conditions. The compressor has nearly 25% higher operating range on a hot day as compared to the normal day conditions. A condensation region is observed near the impeller leading edge which grows as the compressor operating point moves towards choke. The impeller chokes near the mid-chord due to lower speed of sound in the liquid-vapor region resulting in a sharp drop near the choke side of the speedline. This behavior is explained by analyzing the 3D flow field within the impeller and thermodynamic quantities along the streamline. The 3D flow analysis for the flow near the critical point provides useful insight for the designers to modify the current compressor design for higher efficiency.


Author(s):  
A.V. Golenishev ◽  
A.V. Nadezkin ◽  
M.E. Starchenko

Рассматриваются подходы по определению пороговых значений концентрации продуктов износа в отработанном цилиндровом масле, характеризующие переход объекта диагностирования судового крейцкопфного дизеля из одного технического состояния в другое. Показано, что существующие методики не учитывают индивидуальные особенности и техническое состояние деталей цилиндропоршневой группы. Предложено для решения задачи их трибодиагностики использовать разработанную имитационную модель, позволяющую провести моделирование процесса изнашивания цилиндровой втулки и поршневых колец судового дизеля и на основании полученных расчетов определить концентрацию продуктов износа поступивших в отработанное цилиндровое масло при различной скорости изнашивания трущихся деталей. Данные о фактической концентрации продуктов износа в отработанном цилиндровом масле в дальнейшем соотносятся с результатами моделирования, что позволяет оценить техническое состояние деталей цилиндропоршневой группы двигателя. Представлены результаты моделирования по определению пороговых значений концентрации продуктов износа в отработанном цилиндровом масле, характеризующее переход судового дизеля из исправного в несправное техническое состояние. Даны практические рекомендации по выбору пороговых значений содержания продуктов износа в отработанном цилиндровом масле для различных типов судовых крейцкопфных дизелей и условий их эксплуатации.The article examines approaches to determine the threshold values of the concentration of wear debris in used cylinder oil that characterize the transition of a ship crosshead diesel engine unit under test from one technical condition to another. It is shown that the existing methods do not take into account the individual characteristics and technical condition of the parts of the cylinder-piston group. To solve the problem of tribodiagnostics, it is proposed to use the developed simulation model, which allows modeling the wear process of the cylinder bushing and piston rings of a marine diesel engine and, based on the obtained results, determining the concentration of wear products issued in the used cylinder oil at different wear rates of the moving parts. The data on the actual concentration of wear products in the used cylinder oil are subsequently correlated with the simulation model results, which makes it possible to evaluate the technical condition of the parts of the engine cylinder-piston group. The article presents the results of modeling of threshold values determination of the concentration of wear products in used cylinder oil, that measure the transition of a marine diesel engine from a working condition to a malfunctioning technical condition. Practical recommendations are given on choosing threshold values for the concentration of wear products in used cylinder oil for various types of marine crosshead diesel engines and their operating conditions.


Sign in / Sign up

Export Citation Format

Share Document