scholarly journals Microstructure evolution of the Gleeble-simulated heat-affected zone of Ni-based superalloy

2019 ◽  
Vol 287 ◽  
pp. 06002
Author(s):  
Łukasz Rakoczy ◽  
Fabian Hanning ◽  
Joel Andersson ◽  
Małgorzata Grudzień-Rakoczy ◽  
Rafał Cygan ◽  
...  

The formation of liquation cracking in a simulated heat affected zone of René108 is reported. The stress controlled thermo-mechanical experiments were carried out on a Gleeble®3800 testing system. The base alloy was lost-wax cast and then solution treated and aged. Light and scanning electron microscopy of this material revealed high volume fraction of γ' precipitates in the dendrite arms and residual eutectic γ/γ' islands in the interdendritic areas. As a result of short-term exposure to high homologous temperature, the volume fraction of γ' phase was significantly decreased due to the dissolution of precipitates in the surrounding matrix. The thin non-equilibrium liquid film, formed locally along grain boundaries, was a key-factor favoring initiation of cracks and their spreading during the Gleeble testing. The liquid appeared as a result of constitutional liquation, mainly of the γ' precipitates.

1996 ◽  
Vol 44 (6) ◽  
pp. 2397-2407 ◽  
Author(s):  
M. Feller-Kniepmeier ◽  
T. Link ◽  
I. Poschmann ◽  
G. Scheunemann-Frerker ◽  
C. Schulze

Author(s):  
B. H. Kear ◽  
J. M. Oblak ◽  
G. R. Leverant

High temperature nickel-base alloys are strengthened by a high volume fraction, coherent precipitate of γ’ [Ni3 (Al,Ti)], with Ll2 structure. The mechanical properties of these alloys are dependent upon the interaction of dislocations with the ordered γ’ precipitate. A detailed diffraction contrast analysis has been made of dislocation/ γ’ particle interactions occurring during 1400oF creep of the nickel-base alloy Mar-M200.In the early stages of creep, two types of γ’ particle shearing mechanisms have been observed, Fig. 1. The interpretation of these micrographs is illustrated in Fig. 2.


Author(s):  
M Venkatesh Kannan ◽  
N Arivazhagan ◽  
M Nageswara Rao ◽  
G Madhusudhan Reddy

This paper assesses the metallurgical characteristics and mechanical properties of multi-pass gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) of micro-alloyed steel DMR 249-A. The prime objective was to carry out a comparative study of the microstructure and mechanical properties of the joints produced by the two types of welding. A high volume of larger sized inclusions in GMAW contributed to inferior mechanical properties. The coarse-grained part of the heat-affected zone (CGHAZ) showed a lower microhardness. Fracture always occurred in the heat-affected zone, and it is believed that it is associated with CGHAZ. GTAW joints showed low tensile residual stress, higher hardness, and tensile strength. GTA weldment also showed superior impact toughness at sub-zero temperature (–60 °C). Mn-containing inclusions were seen in GTA weldments; it is believed that they promote the formation of acicular ferrite. This is believed to be responsible for the superior mechanical properties of GTA weldments. The microstructural analysis of the two weldments revealed the presence of a higher volume fraction of acicular ferrite in the GTAW. All in all, GTAW joint was found to perform better than GMAW joint.


Author(s):  
D. E. Fornwalt ◽  
A. R. Geary ◽  
B. H. Kear

A systematic study has been made of the effects of various heat treatments on the microstructures of several experimental high volume fraction γ’ precipitation hardened nickel-base alloys, after doping with ∼2 w/o Hf so as to improve the stress rupture life and ductility. The most significant microstructural chan§e brought about by prolonged aging at temperatures in the range 1600°-1900°F was the decoration of grain boundaries with precipitate particles.Precipitation along the grain boundaries was first detected by optical microscopy, but it was necessary to use the scanning electron microscope to reveal the details of the precipitate morphology. Figure 1(a) shows the grain boundary precipitates in relief, after partial dissolution of the surrounding γ + γ’ matrix.


2018 ◽  
Vol 18 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Mohammed J Kadhim ◽  
Mohammed H Hafiz ◽  
Maryam A Ali Bash

The high temperature corrosion behavior of thermal barrier coating (TBC) systemconsisting of IN-738 LC superalloy substrate, air plasma sprayed Ni24.5Cr6Al0.4Y (wt%)bond coat and air plasma sprayed ZrO2-20 wt% ceria-3.6 wt% yttria (CYSZ) ceramic coatwere characterized. The upper surfaces of CYSZ covered with 30 mg/cm2 , mixed 45 wt%Na2SO4-55 wt% V2O5 salt were exposed at different temperatures from 800 to 1000 oC andinteraction times from 1 up to 8 h. The upper surface plan view of the coatings wereidentified for topography, roughness, chemical composition, phases and reaction productsusing scanning electron microscopy, energy dispersive spectroscopy, talysurf, and X-raydiffraction. XRD analyses of the plasma sprayed coatings after hot corrosion confirmed thephase transformation of nontransformable tetragonal (t') into monoclinic phase, presence ofYVO4 and CeVO4 products. Analysis of the hot corrosion CYSZ coating confirmed theformation of high volume fraction of YVO4, with low volume fractions of CeOV4 and CeO2.The formation of these compounds were combined with formation of monoclinic phase (m)from transformation of nontransformable tetragonal phase (t').


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guanhua Xun ◽  
Stephan Thomas Lane ◽  
Vassily Andrew Petrov ◽  
Brandon Elliott Pepa ◽  
Huimin Zhao

AbstractThe need for rapid, accurate, and scalable testing systems for COVID-19 diagnosis is clear and urgent. Here, we report a rapid Scalable and Portable Testing (SPOT) system consisting of a rapid, highly sensitive, and accurate assay and a battery-powered portable device for COVID-19 diagnosis. The SPOT assay comprises a one-pot reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP) followed by PfAgo-based target sequence detection. It is capable of detecting the N gene and E gene in a multiplexed reaction with the limit of detection (LoD) of 0.44 copies/μL and 1.09 copies/μL, respectively, in SARS-CoV-2 virus-spiked saliva samples within 30 min. Moreover, the SPOT system is used to analyze 104 clinical saliva samples and identified 28/30 (93.3% sensitivity) SARS-CoV-2 positive samples (100% sensitivity if LoD is considered) and 73/74 (98.6% specificity) SARS-CoV-2 negative samples. This combination of speed, accuracy, sensitivity, and portability will enable high-volume, low-cost access to areas in need of urgent COVID-19 testing capabilities.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Xu Zhao ◽  
Yadong Gong ◽  
Guiqiang Liang ◽  
Ming Cai ◽  
Bing Han

AbstractThe existing research on SiCp/Al composite machining mainly focuses on the machining parameters or surface morphology. However, the surface quality of SiCp/Al composites with a high volume fraction has not been extensively studied. In this study, 32 SiCp/Al specimens with a high volume fraction were prepared and their machining parameters measured. The surface quality of the specimens was then tested and the effect of the grinding parameters on the surface quality was analyzed. The grinding quality of the composite specimens was comprehensively analyzed taking the grinding force, friction coefficient, and roughness parameters as the evaluation standards. The best grinding parameters were obtained by analyzing the surface morphology. The results show that, a higher spindle speed should be chosen to obtain a better surface quality. The final surface quality is related to the friction coefficient, surface roughness, and fragmentation degree as well as the quantity and distribution of the defects. Lower feeding amount, lower grinding depth and appropriately higher spindle speed should be chosen to obtain better surface quality. Lower feeding amount, higher grinding depth and spindle speed should be chosen to balance grind efficiently and surface quality. This study proposes a systematic evaluation method, which can be used to guide the machining of SiCp/Al composites with a high volume fraction.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4143
Author(s):  
Youzheng Cui ◽  
Shenrou Gao ◽  
Fengjuan Wang ◽  
Qingming Hu ◽  
Cheng Xu ◽  
...  

Compared with other materials, high-volume fraction aluminum-based silicon carbide composites (hereinafter referred to as SiCp/Al) have many advantages, including high strength, small change in the expansion coefficient due to temperature, high wear resistance, high corrosion resistance, high fatigue resistance, low density, good dimensional stability, and thermal conductivity. SiCp/Al composites have been widely used in aerospace, ordnance, transportation service, precision instruments, and in many other fields. In this study, the ABAQUS/explicit large-scale finite element analysis platform was used to simulate the milling process of SiCp/Al composites. By changing the parameters of the tool angle, milling depth, and milling speed, the influence of these parameters on the cutting force, cutting temperature, cutting stress, and cutting chips was studied. Optimization of the parameters was based on the above change rules to obtain the best processing combination of parameters. Then, the causes of surface machining defects, such as deep pits, shallow pits, and bulges, were simulated and discussed. Finally, the best cutting parameters obtained through simulation analysis was the tool rake angle γ0 = 5°, tool clearance angle α0 = 5°, corner radius r = 0.4 mm, milling depth ap = 50 mm, and milling speed vc= 300 m/min. The optimal combination of milling parameters provides a theoretical basis for subsequent cutting.


2011 ◽  
Vol 311-313 ◽  
pp. 201-204
Author(s):  
Hong Zhong Ru ◽  
Ran Ran Zhao

Electrical conductive carbon black-filled cement-based composites are significant as multifunctional structural materials. Double percolation in carbon black-filled cement-based composites involves both carbon black particle percolation and cement paste percolation, which has great effect on the resistivity of composites. Based on double percolation theory, the influences of sand-binder ratio and carbon black volume fraction on the resistivity of carbon black-filled cement-based composites are investigated. The results show that besides carbon black volume fraction, sand-binder ratio is a key factor affecting double percolation behavior in carbon black-filled cement-based composites. At a fixed carbon black content in overall mortar, with increasing sand-binder ratio, the cement paste percolation though aggregate phase increases due to high obstruction of aggregate but the carbon black particle percolation in cement paste decreases. This is because that the microstructure of aggregate is impenetrable so that the carbon black particles are limited in cement paste, that is, the carbon black content in paste is compacted and large amount of conductive paths are generated by lapped adjacent carbon black particles in paste. The double percolation in the electrical conduction in carbon black-filled cement-based composites is observed when the carbon black volume fraction is 7.5% and sand-binder ratio is 1.4, and its resistivity is only 3200 Ωcm, so that a sand-binder ratio of 1.4 and 7.5% carbon black volume fraction or more are recommended for attaining high conductivity with a compromise between workability and conductivity.


Sign in / Sign up

Export Citation Format

Share Document