scholarly journals Selection of the quantity of the allowance at rough treatment of large – size parts from titanium alloy of BT6 (Russian State Standard GOST 19807-91)

2020 ◽  
Vol 329 ◽  
pp. 03011
Author(s):  
T. V. Lomaeva ◽  
S. D. Kugultinov ◽  
I. I. Livshits

The article presents the results of experimental studies of the effect of cutting depth on cutting force and the procedure of assignment of allowance value at rough turning and melting of stamped blanks for large- size parts of rocket equipment from titanium alloy VT6. As a result of the studies carried out, empirical dependence of cutting force on cutting depth was obtained, and method of allocation of allowance value was created, which is very important in processing of large-size stamped blanks.

2014 ◽  
Vol 800-801 ◽  
pp. 237-240
Author(s):  
Li Fu Xu ◽  
Ze Liang Wang ◽  
Shu Tao Huang ◽  
Bao Lin Dai

In this paper, the cutting experiment was used to study the influence of various cutting parameters on cutting force when rough turning titanium alloy (TC4) with the whole CBN tool. The results indicate that among the cutting speed, feed rate and cutting depth, the influence of the cutting depth is the most significant on cutting force; the next is the feed rate and the cutting speed is at least.


2013 ◽  
Vol 315 ◽  
pp. 562-566
Author(s):  
Kosaraju Satyanarayana ◽  
Anne Venu Gopal ◽  
Popuri Bangaru Babu

The problem of machining titanium is one of ever-increasing magnitude due to its low thermal conductivity and work hardening characteristic of the titanium alloy. The efficient machining of titanium alloy with coated carbides involves a proper selection of process parameters to minimizing the surface roughness and cutting force. In the present work, experimental studies have been carried out to obtain the optimum conditions for machining titanium alloy. The effect of machining parameters such speed, feed and depth of cut on the cutting force, surface roughness were investigated. The significance of these parameters, on cutting force and surface roughness has been established using the analysis of variance. Mathematical models have also been developed for estimating the cutting force and surface roughness on the basis of experimental results.


2017 ◽  
Vol 261 ◽  
pp. 135-142 ◽  
Author(s):  
Witold F. Habrat

In this paper, the experimental studies of the finish turning of Ti-6Al-4V titanium alloy with the laser-assisted machining were described. For the tests, a cemented carbide tool was used. The influence of the laser heating on the microstructure of Ti-6Al-4V titanium alloy for kinematics corresponding with the turning process was determined. For a laser scanning rate of 80 m/min and laser power 1200W, the maximum depth of the melted zone was about 50 μm. The beneficial effect of laser assisted machining on components of the cutting force was established. For a cutting speed of 80 m/min, feed rate 0.1 mm/rev, depth of cut 0.25 mm and laser power 1200 W, over 60% reduction of the tangential components of cutting force was observed. The chip-breaking effect for the conventional and the laser-assisted processes was determined. Roughness parameters of the surface after the conventional and laser-assisted turning are compared.


2020 ◽  
Vol 2020 (2) ◽  
pp. 33-41
Author(s):  
Irina Merzlyakova ◽  
Aleksandr Feofanov

The article considers general problems of implementing the enterprise risk management procedure. One of the ways to solve the problems arising when meeting Russian state standard ISO 9001-2015 requirements concerning risk-oriented thinking is presented. A risk assessment control model aimed at coordinating all kinds of the enterprise departments activities, forming a clear algorithm of risk management procedure implementation and attracting a greater number of employees towards this activity is offered.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 267
Author(s):  
Tomasz Rudnicki

The article presents a new functional method of designing self-compacting concrete (SCC). The assumptions of the functional method of designing self-compacting concrete were based on the double coating assumption (i.e., it was assumed that the grains of coarse aggregate were coated with a layer of cement mortar, whereas the grains of sand with cement paste). The proposed method is composed of four stages, each of which is responsible for the selection of a different component of the concrete mix. The proposed designing procedure takes into consideration such a selection of the mineral skeleton in terms of the volumetric saturation of the mineral skeleton, which prevents the blocking of aggregate grains, and the designed liquid phase demonstrated high structural viscosity and low yield stress. The performed experimental studies, the simulation of the elaborated mathematical model fully allowed for the verification of the theoretical assumptions that are the basis for the development of the method of designing self-compacting concrete.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3389
Author(s):  
Marcin Kamiński ◽  
Krzysztof Szabat

This paper presents issues related to the adaptive control of the drive system with an elastic clutch connecting the main motor and the load machine. Firstly, the problems and the main algorithms often implemented for the mentioned object are analyzed. Then, the control concept based on the RNN (recurrent neural network) for the drive system with the flexible coupling is thoroughly described. For this purpose, an adaptive model inspired by the Elman model is selected, which is related to internal feedback in the neural network. The indicated feature improves the processing of dynamic signals. During the design process, for the selection of constant coefficients of the controller, the PSO (particle swarm optimizer) is applied. Moreover, in order to obtain better dynamic properties and improve work in real conditions, one model based on the ADALINE (adaptive linear neuron) is introduced into the structure. Details of the algorithm used for the weights’ adaptation are presented (including stability analysis) to perform the shaft torque signal filtering. The effectiveness of the proposed approach is examined through simulation and experimental studies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shenghan Gao ◽  
Thibault Broux ◽  
Susumu Fujii ◽  
Cédric Tassel ◽  
Kentaro Yamamoto ◽  
...  

AbstractMost solid-state materials are composed of p-block anions, only in recent years the introduction of hydride anions (1s2) in oxides (e.g., SrVO2H, BaTi(O,H)3) has allowed the discovery of various interesting properties. Here we exploit the large polarizability of hydride anions (H–) together with chalcogenide (Ch2–) anions to construct a family of antiperovskites with soft anionic sublattices. The M3HCh antiperovskites (M = Li, Na) adopt the ideal cubic structure except orthorhombic Na3HS, despite the large variation in sizes of M and Ch. This unconventional robustness of cubic phase mainly originates from the large size-flexibility of the H– anion. Theoretical and experimental studies reveal low migration barriers for Li+/Na+ transport and high ionic conductivity, possibly promoted by a soft phonon mode associated with the rotational motion of HM6 octahedra in their cubic forms. Aliovalent substitution to create vacancies has further enhanced ionic conductivities of this series of antiperovskites, resulting in Na2.9H(Se0.9I0.1) achieving a high conductivity of ~1 × 10–4 S/cm (100 °C).


Author(s):  
Ebrahim Hosseini ◽  
Shafiqur Rehman ◽  
Ashkan Alimoradi

Turn-milling is a hybrid machining process which used benefits of interrupted cutting for proceeding of round bars. However, number of controllable parameters in the hybrid process is numerous that makes optimizing the process complicated. In the present study, an optimization work has been proposed to investigate the trade-off between production rate and cutting force in roughing regime as well surface roughness and tensile residual stress in finishing regime. Number of 43 experiments based on response surface methodology was designed and carried out to gather required data for development of quadratic empirical models. Then, the adequacy and importance of process factors were analyzed using analysis of variances. Finally, desirability function was used to optimize the process in rough and finish machining regimes. The obtained results showed that selection of eccentricity and cutter speed at their maximum working range can effectively enhance the quality characteristics in both the roughing and finishing regimes.


1985 ◽  
Vol 18 (4) ◽  
pp. 423-450 ◽  
Author(s):  
C. G. Kurland ◽  
Måns Ehrenberg

SUMMARYTheoretical as well as experimental studies of translational accuracy have most often been concerned with the selection of aminoacyl-tRNA by codon-programmed ribosomes. The selection of the successive codons on the mRNA has received much less attention, probably because it represents both conceptually and experimentally, a much more demanding physical problem. Nevertheless, it would seem that errors in the selection of the codon are potentially much more destructive than errors in selection of aminoacyl-tRNA species. This can be appreciated from the following.


Sign in / Sign up

Export Citation Format

Share Document