scholarly journals Numerical simulation of S-shaped inlet under the intake total pressure distortion

2022 ◽  
Vol 355 ◽  
pp. 01017
Author(s):  
Ying Liu ◽  
Xiaobo Zhang ◽  
Yang Yu ◽  
Bingkun Yan ◽  
Congrui Cai ◽  
...  

During the development of the stealth fighter, the S-shaped inlet enters the designer’s vision because it has better stealth than bump inlet and straight inlet. During the use of the S-shaped inlet, due to its structural reasons, secondary flow is likely to occur in the curved section, which directly causes the flow state to be changeable and complicated. Therefore, this paper takes the S-shaped inlet as the research object to analyzes the steady flow field simulation under uniform inlet condition and distortion inlet condition and analyze the flow field of the airflow and the total pressure of each section under the S-shaped inlet by changing the intake distortion conditions with CFX software. The results show that although the S-shaped inlet will occur total pressure distortion under uniform intake. However, when the S-shaped inlet work under certain flight conditions, the level of total pressure distortion will be smaller than the uniform inlet condition, which can improve the air intake performance. Finally, it can be inferred that with use of the S-shaped intake port, the deterioration of distortion may be prevented under certain specific intake conditions.

2011 ◽  
Vol 130-134 ◽  
pp. 3624-3627
Author(s):  
W.L. Wei ◽  
Zhang Pei ◽  
Y.L. Liu

In this paper, we use two-phase mixture model and the Realizable k-ε turbulence model to numerically simulate the advection secondary flow in a sedimentation tank. The PISO algorithm is used to decouple velocity and pressure. The comparisons between the measured and computed data are in good agreement, which indicates that the model can fully simulate the flow field in a sedimentation tank.


Author(s):  
HaoGuang Zhang ◽  
Kang An ◽  
Feng Tan ◽  
YanHui Wu ◽  
WuLi Chu

The compressor aerodynamic design is conducted under the condition of clean inlet in general, but a compressor often operates under the condition of inlet distortion in the practical application. It has been proven by a lot of experimental and numerical investigations that inlet distortion can decrease the performance and stability of compressors. The circumferential or radial distorted inlet in mostly numerical investigations is made by changing the total pressure and total temperature in the inlet ring surface of the compressors. In most of inlet distortion experiments, distorted inlets are usually created by using wire net, flashboards, barriers or the generator of rotating distortion. The fashion of generating distorted inlet for experiment is different from that for numerical simulation. Consequently, the flow mechanism of affecting the flow field and stability of a compressor with distorted inlet for experiment is partly different than that for numerical simulation. In the numerical work reported here, the inlet distortion is generated by setting some barriers in the inlet ring surface of an axial subsonic compressor rotor. Two kinds of distorted inlet are investigated to exploring the effect of distorted range on the flow field and stability of the compressor with ten-passage unsteady numerical method. The numerical results show that the inlet distortions not only degrade the total pressure and efficiency of the compressor rotor, but also decrease the stability of the rotor. The larger the range of distorted inlet is, the stronger the adverse effect is. The comprehensive stall margin for the inlet distortion of 24 degrees and 48 degrees of ten-passages is reduced about 3.35% and 5.88% respectively. The detailed analysis of the flow field in the compressor indicates that the blockage resulted from tip clearance leakage vortex (TLV) and the flow separation near the suction surfaces of some blades tip for distorted inlet is more serious than that resulted from TLV for clean inlet. Moreover, the larger the range of distorted inlet is, the larger the range of the blockage is. The analysis of unsteady flow shows that during this process, which is that one rotor blade passes through the region affected by the distorted inlet, the range of the blockage in the rotor passage increases first, then reduces, and increases last.


2014 ◽  
Vol 716-717 ◽  
pp. 711-716
Author(s):  
Jie Yu ◽  
Xiong Chen ◽  
Hong Wen Li

In order to study the swirl flow characteristics in the solid fuel ramjet chamber, a new type of annular vane swirler with NACA airfoil is designed. The cold swirl flow field in the chamber is numerically simulated with different camber and t attack angle, while the swirl number , swirl flow field structure, total pressure recovery coefficient were studied. According to numerical simulation result, the main factors in swirl number are camber and angle of attack, the greater angle of attack, the greater the camber ,the stronger swirl will be. Results show that the total pressure loss is mainly concentrated in the inlet section, the total pressure loss cause by vane swirler is small. Radial velocity gradient exists in swirling flow, and increases with the swirl number. With the influence of centrifugal force and combustion chamber structure, the radial velocity gradient increases.


1995 ◽  
Author(s):  
Y. Ohkita ◽  
H. Kodama ◽  
O. Nozaki ◽  
K. Kikuchi ◽  
A. Tamura

A series of numerical and experimental studies have been conducted to understand the mechanism of loss generation in a high speed compressor stator with inlet radial shear flow over the span. In this study, numerical simulation is extensively used to investigate the complex three-dimensional flow in the cascades and to interpret the phenomena appeared in the high speed compressor tests. It has been shown that the inlet radial shear flow generated by upstream rotor had a significant influence on the stator secondary flow, and consequently on the total pressure loss. Redesign of the stator aiming at the reduction of loss by controlling secondary flow has been carried out and the resultant performance recovery was successfully demonstrated both numerically and experimentally.


Author(s):  
Kenta Mizutori ◽  
Koji Fukudome ◽  
Makoto Yamamoto ◽  
Masaya Suzuki

Abstract We performed numerical simulation to understand deposition phenomena on high-pressure turbine vane. Several deposition models were compared and the OSU model showed good adaptation to any flow field and material, so it was implemented on UPACS. After the implementation, the simulations of deposition phenomenon in several cases of the flow field were conducted. From the results, particles adhere on the leading edge and the trailing edge side of the pressure surface. Also, the calculation of the total pressure loss coefficient was conducted after computing the flow field after deposition. The total pressure loss coefficient increased after deposition and it was revealed that the deposition deteriorates aerodynamic performance.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Philip Bear ◽  
Mitch Wolff ◽  
Andreas Gross ◽  
Christopher R. Marks ◽  
Rolf Sondergaard

Improvements in turbine design methods have resulted in the development of blade profiles with both high lift and good Reynolds lapse characteristics. An increase in aerodynamic loading of blades in the low-pressure turbine (LPT) section of aircraft gas turbine engines has the potential to reduce engine weight or increase power extraction. Increased blade loading means larger pressure gradients and increased secondary losses near the endwall. Prior work has emphasized the importance of reducing these losses if highly loaded blades are to be utilized. The present study analyzes the secondary flow field of the front-loaded low-pressure turbine blade designated L2F with and without blade profile contouring at the junction of the blade and endwall. The current work explores the loss production mechanisms inside the LPT cascade. Stereoscopic particle image velocimetry (SPIV) data and total pressure loss data are used to describe the secondary flow field. The flow is analyzed in terms of total pressure loss, vorticity, Q-Criterion, turbulent kinetic energy, and turbulence production. The flow description is then expanded upon using an implicit large eddy simulation (ILES) of the flow field. The Reynolds-averaged Navier–Stokes (RANS) momentum equations contain terms with pressure derivatives. With some manipulation, these equations can be rearranged to form an equation for the change in total pressure along a streamline as a function of velocity only. After simplifying for the flow field in question, the equation can be interpreted as the total pressure transport along a streamline. A comparison of the total pressure transport calculated from the velocity components and the total pressure loss is presented and discussed. Peak values of total pressure transport overlap peak values of total pressure loss through and downstream of the passage suggesting that the total pressure transport is a useful tool for localizing and predicting loss origins and loss development using velocity data which can be obtained nonintrusively.


1997 ◽  
Vol 119 (2) ◽  
pp. 169-175
Author(s):  
Y. Ohkita ◽  
H. Kodama ◽  
O. Nozaki ◽  
K. Kikuchi ◽  
A. Tamura

A series of numerical and experimental studies have been conducted to understand the mechanism of loss generation in a high-speed compressor stator with inlet radial shear flow over the span. In this study, numerical simulation is extensively used to investigate the complex three-dimensional flow in the cascades and to interpret the phenomena that appeared in the high-speed compressor tests. It has been shown that the inlet radial shear flow generated by the upstream rotor had a significant influence on the stator secondary flow, and consequently on the total pressure loss. Redesign of the stator aiming at the reduction of loss by controlling secondary flow has been carried out and the resultant performance recovery was successfully demonstrated both numerically and experimentally.


2014 ◽  
Vol 599-601 ◽  
pp. 377-380
Author(s):  
Qiao Li ◽  
Ya Yu Huang

The numerical simulation calculation of air-assisted atomizer internal gas flow field is done, the distribution and changes of the nozzle inside flow field total pressure, velocity, and dynamic and static pressure are analyzed. The analysis shows that the total pressure loss is less; due to the effect of gas viscous, the high-speed air flow is formed vortex flow near the outlet nozzle and the mutual influence between the dynamic and static pressure. A new way is supported for optimizing the nozzle structure according to these studies.


2014 ◽  
Vol 672-674 ◽  
pp. 1626-1632
Author(s):  
Zhen Song ◽  
Jian Qun Xu ◽  
Li Peng Sun ◽  
Ming Tao Liu

The model of coupled exhaust hood with condenser throat and the model of coupled exhaust hood, condenser throat with last stage were simulated based on the turbulence model Realizable k-ε. Calculated results show that due to the ignoring of the inlet swirl in the model coupled exhaust hood with condenser throat, the flow field is symmetrical and the pressure loss is small. Due to the influence of last stage, in the model of coupled exhaust hood, condenser throat with last stage, the flow field of the inlet of the exhaust hood is uneven, and the vortexes changed more complex, resulting in the increase of the pressure loss of each part and a greater influence in the diffuser pipe. The proportion of pressure loss of diffuser pipe in total pressure loss increases from 0.086 to 0.358, and there is a 70% decline of proportion of pressure loss in volute and condenser throat. In addition, the proportion of the pressure loss in volute is the largest one in these two coupled models. So more attention should be paid in the influence of the last stage, and weaken the vortexes in the volute when designing or optimizing the exhaust passage of steam turbine.


Author(s):  
Hairun Xie ◽  
Yadong Wu ◽  
Anjenq Wang ◽  
Hua Ouyang

The rear-mounted engine is widely used in business and regional jets. It is a “clean wing” design. The engine is mounted behind the wing, so that the inlet/outlet of the nacelle has a minor influence on the flow over the wing. The engine thrust line is close to the fuselage axis. As a result, the asymmetric yaw moment will be smaller when single engine stall occurs. Strict regulations and requirements were set by certification agencies to assess aircraft maneuver capability as well as engine operating characteristics. These regulations are mainly defined to evaluate structural strength, aerodynamics, & engine/aircraft performance. However, due to the nature of the complexity of the flow field at the air intake, the inlet compatibility of fuselage mounted engines becomes one of the most complicated & challenging items to meet FAR33 as well as FAR25 certification requirements, especially during cross wind operating conditions. This research paper discusses the inlet compatibility of rear-mounted aircraft engines with respect to the installed configuration and crosswind operating conditions. Models of two installed configurations, set by the relative position of engine to the fuselage and the wing were created. In each case, the engine inlet flow field was calculated at various ambient wind conditions. Comparisons of the total pressure profile at the air intake were made to assess the likelihood of flow separation at the inlet of engine. Inlet distortion levels of corresponding total pressure profiles were calculated for each operating and installed condition. Assessments are made based on intensive usage of CFD analysis of different engine installations and operating conditions. The flow field information obtained by CFD calculation reveals a close coupling phenomenon exists among engine installations, cross wind, and inlet capability.


Sign in / Sign up

Export Citation Format

Share Document