scholarly journals The Virtual Space Weather Modelling Centre

2020 ◽  
Vol 10 ◽  
pp. 14 ◽  
Author(s):  
Stefaan Poedts ◽  
Andrey Kochanov ◽  
Andrea Lani ◽  
Camilla Scolini ◽  
Christine Verbeke ◽  
...  

Aims. Our goal is to develop and provide an open end-to-end (Sun to Earth) space weather modeling system, enabling to combine (“couple”) various space weather models in an integrated tool, with the models located either locally or geographically distributed, so as to better understand the challenges in creating such an integrated environment. Methods. The physics-based models are installed on different compute clusters and can be run interactively and remotely and that can be coupled over the internet, using open source “high-level architecture” software, to make complex modeling chains involving models from the Sun to the Earth. Visualization tools have been integrated as “models” that can be coupled to any other integrated model with compatible output. Results. The first operational version of the VSWMC is accessible via the SWE Portal and demonstrates its end-to-end simulation capability. Users interact via the front-end GUI and can interactively run complex coupled simulation models and view and retrieve the output, including standard visualizations, via the GUI. Hence, the VSWMC provides the capability to validate and compare model outputs.

2013 ◽  
Vol 791-793 ◽  
pp. 1401-1404
Author(s):  
Chang Zheng Qu ◽  
Hong Qiang Gu ◽  
Lu Gao ◽  
Xue Zhi Lv

HLA (High Level Architecture) is a standard to promote the interoperation and the reuse of the simulation models. In the simulation federation development based on HLA/RTI, how to simplify the process of creating federate is an urgent job. This paper proposes an equipment support simulation federate automatically generation tool in order to solve equipment support concept evaluation on diverse level concept. The federate automatically generation tool can automatically generate federate in different number different function different interaction depending on universal federate code and federate initialization data. The tool not only automatically generates federate framework code, but also automatically generates federation inside function code. It can reduce the difficulties of federate development and increase the efficiency of equipment support concept evaluation. The application of joint operations equipment support concept evaluation is illustrated. It testifies the available and feasible of federate automatically generation tool in equipment support simulation.


2011 ◽  
Vol 130-134 ◽  
pp. 1085-1091
Author(s):  
Cheng Ma ◽  
Tian Yuan Xiao ◽  
Wen Hui Fan ◽  
Hong Bo Sun ◽  
Ying Chao Yue

As a well-known standard of distributed simulation, High Level Architecture (HLA) has adopted as basic framework in most distributed interactive simulation (DIS) systems. At the same time, DIS always involves multiple disciplinary simulation models which are supported by different software. And these software are not always compatible with HLA. For example, though widely used in mechanical kinetics and kinematics simulations, ADAMS, a multi-body kinetics simulation software cannot directly support HLA. To address this issue, this paper analyses redevelopment of legacy systems and models (such as Adams models) in DIS environment and proposes two encapsulation methods which is based on third-party software and user-defined subroutines respectively. A case study demonstrates the feasibility of the proposed methods. And a brief comparison is also given in conclusion section.


2011 ◽  
Vol 58-60 ◽  
pp. 1813-1818
Author(s):  
Yuan Zhang ◽  
Li Min Zhang

High level architecture (HLA) establishes a common simulation technology framework, which supports the linkage between different simulation models, and represents the latest development direction of the distributed simulated. Considering the unity and telescopic expandability of the network linkage interface, the simulation linkage engine development tool was designed and realized. Firstly, the basic characteristic of simulation linkage platform were analyzed, and then the solution of simulation linkage engine was provided during the design and development, finally, the viewable and general development tool supporting the distributed simulation linkage was designed, which provided a high-effective, flexible and shortcut integration platform.


2021 ◽  
Vol 11 (15) ◽  
pp. 6881
Author(s):  
Calvin Chung Wai Keung ◽  
Jung In Kim ◽  
Qiao Min Ong

Virtual reality (VR) is quickly becoming the medium of choice for various architecture, engineering, and construction applications, such as design visualization, construction planning, and safety training. In particular, this technology offers an immersive experience to enhance the way architects review their design with team members. Traditionally, VR has used a desktop PC or workstation setup inside a room, yielding the risk of two users bump into each other while using multiuser VR (MUVR) applications. MUVR offers shared experiences that disrupt the conventional single-user VR setup, where multiple users can communicate and interact in the same virtual space, providing more realistic scenarios for architects in the design stage. However, this shared virtual environment introduces challenges regarding limited human locomotion and interactions, due to physical constraints of normal room spaces. This study thus presented a system framework that integrates MUVR applications into omnidirectional treadmills. The treadmills allow users an immersive walking experience in the simulated environment, without space constraints or hurt potentialities. A prototype was set up and tested in several scenarios by practitioners and students. The validated MUVR treadmill system aims to promote high-level immersion in architectural design review and collaboration.


2021 ◽  
Vol 11 (15) ◽  
pp. 6975
Author(s):  
Tao Zhang ◽  
Lun He ◽  
Xudong Li ◽  
Guoqing Feng

Lipreading aims to recognize sentences being spoken by a talking face. In recent years, the lipreading method has achieved a high level of accuracy on large datasets and made breakthrough progress. However, lipreading is still far from being solved, and existing methods tend to have high error rates on the wild data and have the defects of disappearing training gradient and slow convergence. To overcome these problems, we proposed an efficient end-to-end sentence-level lipreading model, using an encoder based on a 3D convolutional network, ResNet50, Temporal Convolutional Network (TCN), and a CTC objective function as the decoder. More importantly, the proposed architecture incorporates TCN as a feature learner to decode feature. It can partly eliminate the defects of RNN (LSTM, GRU) gradient disappearance and insufficient performance, and this yields notable performance improvement as well as faster convergence. Experiments show that the training and convergence speed are 50% faster than the state-of-the-art method, and improved accuracy by 2.4% on the GRID dataset.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo-yong Park ◽  
Seok-Jun Hong ◽  
Sofie L. Valk ◽  
Casey Paquola ◽  
Oualid Benkarim ◽  
...  

AbstractThe pathophysiology of autism has been suggested to involve a combination of both macroscale connectome miswiring and microcircuit anomalies. Here, we combine connectome-wide manifold learning with biophysical simulation models to understand associations between global network perturbations and microcircuit dysfunctions in autism. We studied neuroimaging and phenotypic data in 47 individuals with autism and 37 typically developing controls obtained from the Autism Brain Imaging Data Exchange initiative. Our analysis establishes significant differences in structural connectome organization in individuals with autism relative to controls, with strong between-group effects in low-level somatosensory regions and moderate effects in high-level association cortices. Computational models reveal that the degree of macroscale anomalies is related to atypical increases of recurrent excitation/inhibition, as well as subcortical inputs into cortical microcircuits, especially in sensory and motor areas. Transcriptomic association analysis based on postmortem datasets identifies genes expressed in cortical and thalamic areas from childhood to young adulthood. Finally, supervised machine learning finds that the macroscale perturbations are associated with symptom severity scores on the Autism Diagnostic Observation Schedule. Together, our analyses suggest that atypical subcortico-cortical interactions are associated with both microcircuit and macroscale connectome differences in autism.


Sign in / Sign up

Export Citation Format

Share Document