Hip Taping Positively Alters Running Kinematics in Asymptomatic Females

2018 ◽  
Vol 39 (14) ◽  
pp. 1068-1074
Author(s):  
Ashleigh Masters ◽  
Kevin Netto ◽  
Susi Brooker ◽  
Diana Hopper ◽  
Bernard Liew

AbstractGreater functional knee valgus (FKV) is thought to contribute to a greater risk of sustaining overuse running injuries. The hip is commonly implicated in greater functional knee valgus, but no studies have investigated the effects of hip taping on running kinematics. The present study investigated whether or not hip taping altered hip and knee kinematics compared to sham and no taping in female runners demonstrating excessive functional knee valgus. Lower limb stance-phase kinematics were collected from 23 female runners using three-dimensional motion capture. Participants performed over ground running at 3.5 m/s and 5.0 m/s. Three taping conditions (no tape; sham tape; hip tape) were tested. Statistical inference was performed using Statistical Parametric Mapping Hotelling’s paired t-tests, with post-hoc paired t-tests. Hip taping significantly decreased hip adduction and internal rotation angles throughout stance phase by up to 7°, compared to sham and no taping. Hip taping significantly increased knee adduction, internal rotation, flexion, and reduced peak knee flexion angles, compared to no tape. Hip taping reduced excessive hip motion by clinically meaningful magnitudes, and also benefited knee frontal and transverse plane kinematics at the slower running speed. Hip taping may provide an immediate solution in correcting FKV in running.

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Hunter J. Bennett ◽  
Kevin A. Valenzuela ◽  
Scott K. Lynn ◽  
Joshua T. Weinhandl

Abstract Alterations of foot rotation angles have successfully reduced external knee adduction moments during walking and running. However, reductions in knee adduction moments may not result in reductions in knee joint reaction forces. The purpose of this study was to examine the effects of internal and external foot rotation on knee, hip, and ankle joint reaction forces during running. Motion capture and force data were recorded of 19 healthy adults running at 3.35 m/s during three conditions: (1) preferred (normal) and with (2) internal and (3) external foot rotation. Musculoskeletal simulations were performed using opensim and the Rajagopal 2015 model, modified to a two degree-of-freedom knee joint. Muscle excitations were derived using static optimization, including muscle physiology parameters. Joint reaction forces (i.e., the total force acting on the joints) were computed and compared between conditions using one-way analyses of variance (ANOVAs) via statistical parametric mapping (SPM). Internal foot rotation reduced resultant hip forces (from 18% to 23% stride), while external rotation reduced resultant ankle forces (peak force at 20% stride) during the stance phase. Three-dimensional and resultant knee joint reaction forces only differed at very early and very late stance phase. The results of this study indicate, similar to previous findings, that reductions in external knee adduction moments do not mirror reductions in knee joint reaction forces.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Akiyoshi Mabuchi ◽  
Hiroshi Kitoh ◽  
Masato Inoue ◽  
Mitsuhiko Hayashi ◽  
Naoki Ishiguro ◽  
...  

Background. The sensomotor insole (SMI) has clinically been shown to be successful in treating an intoeing gait. We investigated the biomechanical effect of SMI on a pediatric intoeing gait by using three-dimensional gait analysis. Methods. Six patients with congenital clubfeet and four patients with idiopathic intoeing gait were included. There were five boys and five girls with the average age at testing of 5.6 years. The torsional profile of the lower limb was assessed clinically. Three-dimensional gait analysis was performed in the same shoes with and without SMI. Results. All clubfeet patients exhibited metatarsal adductus, while excessive femoral anteversion and/or internal tibial torsion was found in patients with idiopathic intoeing gait. SMI showed significant decreased internal rotation of the proximal femur in terminal swing phase and loading response phase. The internal rotation of the tibia was significantly smaller in mid stance phase and terminal stance phase by SMI. In addition, SMI significantly increased the walking speed and the step length. Conclusions. SMI improved abnormal gait patterns of pediatric intoeing gait by decreasing femoral internal rotation through the end of the swing phase and the beginning of the stance phase and by decreasing tibial internal rotation during the stance phase.


2014 ◽  
Vol 30 (6) ◽  
pp. 707-712 ◽  
Author(s):  
Timothy C. Mauntel ◽  
Barnett S. Frank ◽  
Rebecca L. Begalle ◽  
J. Troy Blackburn ◽  
Darin A. Padua

A greater knee valgus angle is a risk factor for lower extremity injuries. Visually observed medial knee displacement is used as a proxy for knee valgus motion during movement assessments in an attempt to identify individuals at heightened risk for injury. The validity of medial knee displacement as an indicator of valgus motion has yet to be determined during a single-leg squat. This study compared three-dimensional knee and hip angles between participants who displayed medial knee displacement (MKD group) during a single-leg squat and those who did not (control group). Participants completed five single-leg squats. An electromagnetic motion tracking system was used to quantify peak knee and hip joint angles during the descent phase of each squat. MANOVA identified a difference between the MKD and control group kinematics. ANOVA post hoc testing revealed greater knee valgus angle in the MKD (12.86 ± 5.76) compared with the control (6.08 ± 5.23) group. There were no other differences between groups. Medial knee displacement is indicative of knee valgus motion; however, it is not indicative of greater knee or hip rotation, or hip adduction. These data indicate that clinicians can accurately identify individuals with greater knee valgus angle through visually observed medial knee displacement.


2013 ◽  
Vol 22 (3) ◽  
pp. 184-190 ◽  
Author(s):  
John H. Hollman ◽  
Jeffrey M. Hohl ◽  
Jordan L. Kraft ◽  
Jeffrey D. Strauss ◽  
Katie J. Traver

Context:Abnormal lower extremity kinematics during dynamic activities may be influenced by impaired gluteus maximus function.Objective:To examine whether hip-extensor strength and gluteus maximus recruitment are associated with dynamic frontal-plane knee motion during a jump-landing task.Design:Exploratory study.Setting:Biomechanics laboratory.Participants:40 healthy female volunteers.Main Outcome Measures:Isometric hip-extension strength was measured bilaterally with a handheld dynamometer. Three-dimensional hip and knee kinematics and gluteus maximus electromyography data were collected bilaterally during a jumplanding test. Data were analyzed with hierarchical linear regression and partial correlation coefficients (α = .05).Results:Hip motion in the transverse plane was highly correlated with knee motion in the frontal plane (partial r = .724). After controlling for hip motion, reduced magnitudes of isometric hip-extensor strength (partial r = .470) and peak gluteus maximus recruitment (partial r = .277) were correlated with increased magnitudes of knee valgus during the jump-landing task.Conclusion:Hip-extensor strength and gluteus maximus recruitment, which represents a measure of the muscle’s neuromuscular control, are both associated with frontal-plane knee motions during a dynamic weight-bearing task.


2013 ◽  
Vol 39 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Shuyang Han ◽  
Shirong Ge ◽  
Hongtao Liu ◽  
Rong Liu

Abstract The squat exercise was usually performed with varying feet and hip angles by different populations. The objective of this study was to compare and contrast the three-dimensional knee angles, moments, and forces during dynamic squat exercises with varying feet and hip angles. Lower extremity motions and ground reaction forces for fifteen healthy subjects (9 females and 6 males) were recorded while performing the squat with feet pointing straight ahead (neutral squat), 30º feet adduction (squeeze squat) and 30º feet abduction (outward squat). Nonparametric procedures were used to detect differences in the interested measures between the conditions. No significant difference in three-dimensional peak knee angles was observed for three squat exercises (p>0.05), however, the overall tendency of knee rotations was affected by varying feet and hip positions. During the whole cycle, the outward squat mainly displayed adduction moments, while the neutral and squeeze squat demonstrated abduction moments. Peak abduction moments were significantly affected by feet positions (p<0.05). Moreover, the tibiofemoral and patellofemoral joint forces progressively increased as knee flexed and decreased as knee extended, yet peak forces were not affected by varying feet positions (p>0.05). In conclusion, a neutral position is recommended to perform the squat exercise, while the squeeze squat and outward squat might contribute to the occurrence of joint pathologies.


2009 ◽  
Vol 44 (5) ◽  
pp. 503-510 ◽  
Author(s):  
Grace M. Golden ◽  
Michael J. Pavol ◽  
Mark A. Hoffman

Abstract Context: Cutting maneuvers have been implicated as a mechanism of noncontact anterior cruciate ligament (ACL) injuries in collegiate female basketball players. Objective: To investigate knee kinematics and kinetics during running when the width of a single step, relative to the path of travel, was manipulated, a lateral false-step maneuver. Design: Crossover design. Setting: University biomechanics laboratory. Patients or Other Participants: Thirteen female collegiate basketball athletes (age  =  19.7 ± 1.1 years, height  =  172.3 ± 8.3 cm, mass  =  71.8 ± 8.7 kg). Intervention(s): Three conditions: normal straight-ahead running, lateral false step of width 20% of body height, and lateral false step of width 35% of body height. Main Outcome Measure(s): Peak angles and internal moments for knee flexion, extension, abduction, adduction, internal rotation, and external rotation. Results: Differences were noted among conditions in peak knee angles (flexion [P &lt; .01], extension [P  =  .02], abduction [P &lt; .01], and internal rotation [P &lt; .01]) and peak internal knee moments (abduction [P &lt; .01], adduction [P &lt; .01], and internal rotation [P  =  .03]). The lateral false step of width 35% of body height was associated with larger peak flexion, abduction, and internal rotation angles and larger peak abduction, adduction, and internal rotation moments than normal running. Peak flexion and internal rotation angles were also larger for the lateral false step of width 20% of body height than for normal running, whereas peak extension angle was smaller. Peak internal rotation angle increased progressively with increasing step width. Conclusions: Performing a lateral false-step maneuver resulted in changes in knee kinematics and kinetics compared with normal running. The differences observed for lateral false steps were consistent with proposed mechanisms of ACL loading, suggesting that lateral false steps represent a hitherto neglected mechanism of noncontact ACL injury.


Author(s):  
Datao Xu ◽  
Jingying Lu ◽  
Julien S Baker ◽  
Gusztáv Fekete ◽  
Yaodong Gu

Volleyball players often land on a single leg following a spike shot because of a shift in the center of gravity. This landing is one of the high-risk actions for non-contact ACL injury. The purpose of this study was to compare and analyze the discrete and temporal kinematics and kinetics associated with functional valgus collapse during volleyball in player landing phases during a single-leg landing and double-leg landing following a spike shot. Kinematics and kinetics data were collected (captured by a Vicon motion system and AMTI force plate, processed by Visual-3D software) during the single-leg and double-leg landing phases in 13 semi-professional male volleyball players. The landing phase was defined as initial ground contact (0% landing phase) to maximum knee flexion (100% landing phase). Statistical Parametric Mapping (SPM) analysis revealed that single-leg landing depicted a significantly greater knee abduction angle and hip adduction moment than double-leg landing during the 0%–68% landing phase (single-leg: 7°–16°, double-leg: 0°–9°, p < 0.001) and 18%–22% (single-leg: 0.62–0.91 Nm/kg, double-leg: 0.08–0.19 Nm/kg, p = 0.0063) landing phase, respectively. The traditional discrete analysis revealed that single-leg landing depicted a significantly greater peak knee internal rotation moment (single-leg: 1.46 ± 0.38 Nm/kg, double-leg: 0.79 ± 0.19 Nm/kg, p = 0.006) and peak hip internal rotation moment (single-leg: −2.20 ± 0.54 Nm/kg, double-leg: −0.88 ± 0.30 Nm/kg, p = 0.011) than double-leg landing. Most differences were within a time frame during the landing phase of 30–50 ms in which non-contact ACL injuries are considered to happen. These recorded time frames are consistent with biomechanical measures that are deemed dangerous. To reduce lower limb injury, a volleyball player should consciously swing the arms to influence the body to maintain a better-balanced state. Adjusting the landing mode of the lower limbs can achieve a good cushioning effect during landing following a spike shot.


2019 ◽  
Vol 35 (6) ◽  
pp. 370-376
Author(s):  
Jennifer A. Hogg ◽  
Randy J. Schmitz ◽  
Sandra J. Shultz

Clinical femoral anteversion (Craig test) and hip range of motion (ROM) have been associated with valgus collapse, but their clinical usefulness in predicting biomechanics is unknown. Our purpose was to determine the individual and combined predictive power of femoral anteversion and passive hip ROM on 3-dimensional valgus collapse (hip internal rotation and adduction, knee rotation, and abduction) during a single-leg forward landing in females. Femoral anteversion and passive hip ROM were measured on 20 females (24.9 [4.1] y, 168.7 [8.0] cm, 63.8 [11.6] kg). Three-dimensional kinematics and kinetics were collected over 5 trials of the task. Each variable was averaged across trials. Backward, stepwise regressions determined the extent to which our independent variables were associated with valgus collapse. The combination of greater hip internal and external rotation ROM (partial r = .52 and .56) predicted greater peak knee internal rotation moment (R2 = .38, P = .02). Less hip internal rotation ROM (partial r = −.44) predicted greater peak knee abduction moments (R2 = .20, P = .05). Greater total hip ROM (internal and external rotation ROM) was not consistently associated with combined motions of valgus collapse but was indicative of isolated knee moments. Passive hip ROM is more associated with knee moments than is femoral anteversion as measured with Craig test.


2018 ◽  
Vol 65 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Jonathan Sinclair ◽  
Bobbie Butters ◽  
Philip Stainton

Abstract The current investigation examined the effects of running barefoot and in minimalist footwear on medial tibiofemoral compartment loading, compared to conventional running trainers. Fifteen male runners ran over a force platform in five different footwear conditions (barefoot, Vibram five-fingers (Footwear A), Inov-8 (Footwear B) Nike-Free (Footwear C), and running trainer) whilst lower extremity kinematics were examined using a three-dimensional camera system. Medial compartment loading during the stance phase was explored using the knee adduction moment (KAM). In addition, the KAM instantaneous load rate was also calculated. Differences between footwear across the entire stance phase were examined using 1-dimensional statistical parametric mapping, whereas differences in discrete parameters were explored using one-way repeated measures ANOVA. Statistical parametric mapping revealed that Footwear B was associated with a significantly larger KAM compared to the running trainer from 15-20 and 25-30% of the stance phase and also Footwear C from 15-20% of the stance phase. The KAM instantaneous load rate was significantly larger in the barefoot (210.69 Nm/kg/s), Footwear A (200.23 Nm/kg/s) and Footwear B (186.03 Nm/kg/s) conditions in comparison to Footwear C (100.88 Nm/kg/s) and running trainers (92.70 Nm/kg/s). The findings from this study indicate that running barefoot and in minimalist footwear with the least midsole interface may place runners at increased risk of medial compartment knee OA, although further exploration using habitual barefoot / minimalist footwear users is required.


Sign in / Sign up

Export Citation Format

Share Document