scholarly journals In vitro Anti-Trypanosomal Activities of Indanone-Based Chalcones

Drug Research ◽  
2018 ◽  
Vol 69 (06) ◽  
pp. 337-341 ◽  
Author(s):  
Richard M. Beteck ◽  
Lesetje J. Legoabe ◽  
Michelle Isaacs ◽  
Heinrich C. Hoppe

Human African trypanosomiasis is a neglected infectious disease that affects mostly people living in the rural areas of Africa. Current treatment options are limited to just four drugs that have been in use of four to nine decades. The life-threatening toxic side-effects associated with the use of these drugs are disconcerting. Poor efficacy, low oral bioavailability, and high cost are other shortcomings of current HAT treatments. Evaluating the potentials of known hits for other therapeutic areas may be a fast and convenient method to discover new hit compounds against alternative targets. A library of 34 known indanone based chalcones was screened against T.b. brucei and nine potent hits, having IC50 values between 0.5–8.9 µM, were found. The SAR studies of this series could provide useful information in guiding future exploration of this class of compounds in search of more potent, safe, and low cost anti-trypanosomal agents. Graphical Abstract

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1248 ◽  
Author(s):  
Lianet Monzote ◽  
Isabel Herrera ◽  
Prabodh Satyal ◽  
William Setzer

Leishmaniasis is a neglected tropical disease caused by members of the Leishmania genus of parasitic protozoa that cause different clinical manifestations of the disease. Current treatment options for the cutaneous disease are limited due to severe side effects, poor efficacy, limited availability or accessibility, and developing resistance. Essential oils may provide low cost and readily available treatment options for leishmaniasis. In-vitro screening of a collection of 52 commercially available essential oils has been carried out against promastigotes of Leishmania amazonensis. In addition, cytotoxicity has been determined for the essential oils against mouse peritoneal macrophages in order to determine selectivity. Promising essential oils were further screened against intracellular L. amazonensis amastigotes. Three essential oils showed notable antileishmanial activities: frankincense (Boswellia spp.), coriander (Coriandrum sativum L.), and wintergreen (Gualtheria fragrantissima Wall.) with IC50 values against the amastigotes of 22.1 ± 4.2, 19.1 ± 0.7, and 22.2 ± 3.5 μg/mL and a selectivity of 2, 7, and 6, respectively. These essential oils could be explored as topical treatment options for cutaneous leishmaniasis.


2012 ◽  
Vol 21 (3) ◽  
pp. 75-84
Author(s):  
Venkata Vijaya K. Dalai ◽  
Jason E. Childress ◽  
Paul E Schulz

Dementia is a major public health concern that afflicts an estimated 24.3 million people worldwide. Great strides are being made in order to better diagnose, prevent, and treat these disorders. Dementia is associated with multiple complications, some of which can be life-threatening, such as dysphagia. There is great variability between dementias in terms of when dysphagia and other swallowing disorders occur. In order to prepare the reader for the other articles in this publication discussing swallowing issues in depth, the authors of this article will provide a brief overview of the prevalence, risk factors, pathogenesis, clinical presentation, diagnosis, current treatment options, and implications for eating for the common forms of neurodegenerative dementias.


2021 ◽  
Vol 8 (6) ◽  
pp. 77
Author(s):  
Oihane Mitxelena-Iribarren ◽  
Sara Lizarbe-Sancha ◽  
Jay Campisi ◽  
Sergio Arana ◽  
Maite Mujika

The use of lipid nanoparticles as biodegradable shells for controlled drug delivery shows promise as a more effective and targeted tumor treatment than traditional treatment methods. Although the combination of target therapy with nanotechnology created new hope for cancer treatment, methodological issues during in vitro validation of nanovehicles slowed their application. In the current work, the effect of methotrexate (MTX) encapsulated in different matrices was evaluated in a dynamic microfluidic platform. Effects on the viability of osteosarcoma cells in the presence of recirculation of cell media, free MTX and two types of blank and drug-containing nanoparticles were successfully assessed in different tumor-mimicking microenvironments. Encapsulated MTX was more effective than the equal dose free drug treatment, as cell death significantly increased under the recirculation of both types of drug-loaded nanoparticles in all concentrations. In fact, MTX-nanoparticles reduced cell population 50 times more than the free drug when 150-µM drug dose was recirculated. Moreover, when compared to the equivalent free drug dose recirculation, cell number was reduced 60 and 100 points more under recirculation of each nanoparticle with a 15-µM drug concentration. Thus, the results obtained with the microfluidic model present MTX-lipid nanoparticles as a promising and more effective therapy for pediatric osteosarcoma treatment than current treatment options.


2020 ◽  
Author(s):  
Maria Kuzikov ◽  
Elisa Costanzi ◽  
Jeanette Reinshagen ◽  
Francesca Esposito ◽  
Laura Vangeel ◽  
...  

Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, and have identified 62 additional compounds with IC50 values below 1 uM and profiled their selectivity towards Chymotrypsin and 3CL-Pro from the MERS virus. A subset of 8 inhibitors showed anti-cytopathic effect in a Vero-E6 cell line and the compounds thioguanosine and MG-132 were analysed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 Angs., showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity.


Author(s):  
Catherine Karbasiafshar ◽  
Frank W. Sellke ◽  
M. Ruhul Abid

Cardiovascular disease (CVD) is the leading cause of death globally. Current treatment options include lifestyle changes, medication, and surgical intervention. However, many patients are unsuitable candidates for surgeries due to comorbidities, diffuse coronary artery disease or advanced stages of heart failure. The search for new treatment options has recently transitioned from cell-based therapies to stem-cell derived extracellular vesicles (EVs). A number of challenges remain in the EV field, including the effect of comorbidities, characterization, and delivery, However, recent revolutionary developments and insight into the potential of 'personalizing' EV contents by bioengineering methods to alter specific signaling pathways in the ischemic myocardium hold promise. Here, we discuss the past limitations of cell-based therapies, and recent EV studies involving in vivo, in vitro, and omics, and future challenges and opportunities in EV-based treatments in CVD.


2007 ◽  
Vol 51 (8) ◽  
pp. 2801-2810 ◽  
Author(s):  
Amanda M. Mathis ◽  
Arlene S. Bridges ◽  
Mohamed A. Ismail ◽  
Arvind Kumar ◽  
Iris Francesconi ◽  
...  

ABSTRACT Human African trypanosomiasis is a devastating disease with only a few treatment options, including pentamidine. Diamidine compounds such as pentamidine, DB75, and DB820 are potent antitrypanosomal compounds. Previous investigations have shown that diamidines accumulate to high concentrations in trypanosomes. However, the mechanism of action of this class of compounds remains unknown. A long-hypothesized mechanism of action has been binding to DNA and interference with DNA-associated enzymes. The fluorescent diamidines, DB75 and DB820, have been shown to localize not only in the DNA-containing nucleus and kinetoplast of trypanosomes but also to the acidocalcisomes. Here we investigate two series of analogs of DB75 and DB820 with various levels of in vitro antitrypanosomal activity to determine whether any correlation exists between trypanosome accumulation, distribution, and in vitro activity. Despite wide ranges of in vitro antitrypanosomal activity, all of the compounds investigated accumulated to millimolar concentrations in trypanosomes over a period of 8 h. Interestingly, some of the less potent compounds accumulated to concentrations much higher than those of more potent compounds. All of the compounds were localized to the DNA-containing nucleus and/or kinetoplast, and many were also found in the acidocalcisomes. Accumulation in the nucleus and kinetoplast should be important to the mechanism of action of these compounds. The acidocalcisomes may also play a role in the mechanism of action of these compounds. This investigation suggests that the extent of accumulation alone is not responsible for killing trypanosomes and that organelle-specific accumulation may not predict in vitro activity.


Author(s):  
Ebele Erhuanga ◽  
Maingaila Moono Banda ◽  
Doutimiye Kiakubu ◽  
Isah Bolaji Kashim ◽  
Bioye Ogunjobi ◽  
...  

Abstract Many households in Nigeria lack access to safe drinking water. Sixty-three percent (63%) of the nation's population live in rural areas where only 3% of households have access to safely managed drinking water. This suggests an urgent need for intervention to offer sustainable solutions to drinking water needs at household levels. An operational research was commissioned by the United Nations Children's Fund (UNICEF) Nigeria to generate evidence to inform and guide Water, Sanitation and Hygiene (WASH) programming on household water quality. This involved an assessment of local manufacturing of household water filters; factors influencing social acceptability and market opportunities for clay and biosand water filters in Nigeria. Implementation of the research recommendations by the filter factories resulted in improved bacterial removal efficiency (>97%) in filters. Factors such as filter design and efficiency were shown to influence acceptability of filters, which influenced the price at which users were willing to pay for the filters in the study areas. The market research indicated low popularity of the filters due to lack of promotion and marketing of the water filters. The research outcomes show great potential for sustainability and marketability of clay and biosand water filters for household water treatment in Nigeria.


2020 ◽  
Author(s):  
Jin Lee ◽  
Nicole Ammerman ◽  
Anusha Agarwal ◽  
Maram Naji ◽  
Si-Yang Li ◽  
...  

AbstractCurrent treatment options for lung disease caused by Mycobacterium abscessus complex infections have limited effectiveness. To maximize the use of existing antibacterials and to help inform regimen design for treatment, we assessed the in vitro bactericidal activity of single drugs against actively multiplying and net non-replicating M. abscessus populations in nutrient-rich and nutrient starvation conditions, respectively. As single drugs, bedaquiline and rifabutin exerted bactericidal activity only against nutrient-starved and actively growing M. abscessus, respectively. However, when combined, both bedaquiline and rifabutin were able to specifically contribute bactericidal activity at relatively low, clinically relevant concentrations against both replicating and non-replicating bacterial populations. The addition of a third drug, amikacin, further enhanced the bactericidal activity of the bedaquiline-rifabutin combination against nutrient-starved M. abscessus. Overall, these in vitro data suggest that bedaquiline-rifabutin may be a potent backbone combination to support novel treatment regimens for M. abscessus infections. This rich dataset of differential time-and concentration-dependent activity of drugs, alone and together, against M. abscessus also highlights several issues affecting interpretation and translation of in vitro findings.


2021 ◽  
Vol 6 (6) ◽  
pp. 501-509
Author(s):  
Gerardo Fusco ◽  
Francesco M. Gambaro ◽  
Berardo Di Matteo ◽  
Elizaveta Kon

Knee osteoarthritis is a degenerative condition characterized by progressive cartilage degradation, subchondral damage, and bone remodelling. Among the approaches implemented to achieve symptomatic and functional improvements, injection treatments have gained increasing attention due to the possibility of intra-articular delivery with reduced side effects compared to systemic therapies. In addition to well-established treatment options such as hyaluronic acid (HA), cortico-steroids (CS) and oxygen-ozone therapy, many other promising products have been employed in the last decades such as polydeoxyribonucleotide (PDRN) and biologic agents such as platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs). Moreover, ultrasound-guided intra-meniscal injection and X-ray-guided subchondral injection techniques have been introduced into clinical practice. Even when not supported by high evidence consensus, intra-articular CS and HA injections have gained precise indications for symptomatic relief and clinical improvement in OA. Biological products are strongly supported by in vitro evidence but there is still a lack of robust clinical evidence. PRP and MSCs seem to relieve OA symptoms through a regulation of the joint homeostasis, even if their capability to restore articular cartilage is still to be proved in vivo. Due to increasing interest in the subchondral bone pathology, subchondral injections have been developed with promising results in delaying joint replacement. Nevertheless, due to their recent development and the heterogeneity of the injected products (biologic agents or calcium phosphate), this approach still lacks strong enough evidence to be fully endorsed. Combined biological treatments, nano-molecular approaches, monoclonal antibodies and ‘personalized’ target therapies are currently under development or under investigation with the aim of expanding our armamentarium against knee OA. Cite this article: EFORT Open Rev 2021;6:501-509. DOI: 10.1302/2058-5241.6.210026


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi70-vi70
Author(s):  
Jiaojiao Deng ◽  
Sophia Chernikova ◽  
Wolf-Nicolas Fischer ◽  
Kerry Koller ◽  
Bernd Jandeleit ◽  
...  

Abstract Leptomeningeal metastasis (LM), a spread of cancer to the cerebrospinal fluid and meninges, is universally and rapidly fatal due to poor detection and no effective treatment. Breast cancers account for a majority of LMs from solid tumors, with triple-negative breast cancers (TNBCs) having the highest propensity to metastasize to LM. The treatment of LM is challenged by poor drug penetration into CNS and high neurotoxicity. Therefore, there is an urgent need for new modalities and targeted therapies able to overcome the limitations of current treatment options. Quadriga has discovered a novel, brain-permeant chemotherapeutic agent that is currently in development as a potential treatment for glioblastoma (GBM). Recently, we have demonstrated dose-dependent in vitro and in vivo anti-tumor activity with various breast cancer cell lines including the human TNBC cell line MDA-MB-231. To evaluate the in vivo antitumor activity of the compound on LM, we used the mouse model of LM based on the internal carotid injection of luciferase-expressing MDA-MB-231-BR3 cells. Once the bioluminescence signal intensity from the metastatic spread reached (0.2 - 0.5) x 106photons/sec, mice were dosed i.v. (8 mg/kg once a week for nine weeks) or i.p. (4 or 8 mg/kg twice a week for nine weeks). Tumor growth was monitored by bioluminescence. The compound was well tolerated and caused a significant delay in metastatic growth resulting in significant extension of survival. Tumors regressed completely in ~ 28 % of treated animals in the i.p. group. Given that current treatments for LM are palliative with only few studies reporting a survival benefit, Quadriga’s new agent could be effective as a therapeutic for both primary and metastatic brain tumors such as LM. REF: https://onlinelibrary.wiley.com/doi/full/10.1002/pro6.43


Sign in / Sign up

Export Citation Format

Share Document