scholarly journals Euryops arabicus Promotes Healing of Excised Wounds in Rat Skin: Emphasis on Its Collagen-Enhancing, Antioxidant, and Anti-Inflammatory Activities

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ahmed Abdel-Lateff ◽  
Ashraf B. Abdel-Naim ◽  
Walied M. Alarif ◽  
Mardi M. Algandaby ◽  
Najla A. Alburae ◽  
...  

Euryops arabicus Steud (E. arabicus) belongs to the family Asteraceae. It has several uses in folk medicine in the Arabian Peninsula. The current study aimed at evaluating the wound healing properties of the E. arabicus extract in rats. Primarily, E. arabicus successfully accelerated cell migration in vitro and it also showed no signs of dermal toxicity. Topical application of E. arabicus extract (5% or 20%) expedited healing of excised skin in rats. Histological examinations indicated that E. arabicus shortened epithelization period, stimulated fibroblast activity, and increased collagen deposition in wound tissues. The plant extract exerted antioxidant activity as evidenced by inhibition of GSH depletion and MDA accumulation and enhanced mRNA expression of Sod1 in wound tissues collected at the end of the experiment. Further, E. arabicus inhibited the rise of TNF-α and IL-1β in the skin wound region. The anti-inflammatory was confirmed by the observed down regulation of Ptgs2, Nos2, IL-6, and NF-κB mRNA expression. In addition, the extract enhanced the expression of TGF-β1 and HIF-1α in wounded skin tissues as indicated immunohistochemically. Conclusively, E. arabicus expedites excision wound healing in rats. Collagen-enhancing, anti-inflammatory, and antioxidant properties mediate the observed wound healing activity. These findings might contribute to our understanding of the ethnobotanical use of E. arabicus in wounds.

Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


2015 ◽  
Vol 43 (02) ◽  
pp. 269-287 ◽  
Author(s):  
Kun-Cheng Li ◽  
Yu-Ling Ho ◽  
Guan-Jhong Huang ◽  
Yuan-Shiun Chang

Lobelia chinensis Lour (LcL) is a popular herb that has been widely used as folk medicine in China for the treatment of fever, lung cancer, and inflammation for hundreds of years. Recently, several studies have shown that the anti-inflammatory properties were correlated with the inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from the NF-κB pathway. The aim of this study was to evaluate the anti-oxidative and anti-inflammatory activities of L. chinensis. Both suppressive activities on LPS-induced nitric oxide production in RAW264.7 macrophages in vitro and the acute rat lung injury model in vivo were studied. The results showed that the methanol extract of LcL and its fractions within the range of 62.5–250 μg/mL did not induce cytotoxicity (p < 0.001). The ethyl acetate fraction of LcL showed better NO inhibition activity than other fractions. On the other hand, the Lc-EA (62.5, 125, 250 mg/kg) pretreated rats showed a decrease in the pro-inflammatory cytokines (TNF-α, IL-β, IL-6) and inhibited iNOS, COX-2 expression through the NF-κB pathway. These results suggested that L. chinensis exhibited an anti-inflammatory effect through the NF-κB pathways.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3353 ◽  
Author(s):  
Oya Ustuner ◽  
Ceren Anlas ◽  
Tulay Bakirel ◽  
Fulya Ustun-Alkan ◽  
Belgi Diren Sigirci ◽  
...  

Thymus sipyleus Boiss. subsp. rosulans (Borbas) Jalas (TS) is a commonly used plant in the treatment of various complaints, including skin wounds in Turkish folk medicine. Despite the widespread traditional use of TS, there is not any scientific report confirming the effectiveness of this plant on the healing process. This research aimed to investigate the effects of different extracts obtained from TS on biological events during wound healing, on a cellular basis. In this context, proliferative activities of the extracts, as well as the effects on wound closure and hydroxyproline synthesis, were determined. In addition to wound healing properties, the antioxidant, antibacterial and anti-inflammatory activities of the extracts were evaluated. Decoction (D) and infusion (I) extracts contained the highest amount of phenolic content and showed the most potent activity against DPPH radical. All extracts exhibited complete protection against the damage induced by hydrogen peroxide (H2O2) by increasing cell viability compared to only H2O2-treated groups, both in co-treatment and pre-treatment protocols. None of the extracts exhibited cytotoxic activity, and most of the extracts from the TS stimulated fibroblast proliferation and migration. All TS extracts exert anti-inflammatory activity by suppressing the overproduction of tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO). The most pronounced activity on hydroxyproline synthesis was observed in D extract. In summary, it was observed that TS extracts can promote the healing process by enhancing fibroblast migration, proliferation and collagen synthesis as well as suppressing pro-inflammatory cytokines. The obtained data in this work support the traditional use of TS as a valuable plant-based compound for the treatment of wounds.


Marine Drugs ◽  
2018 ◽  
Vol 16 (10) ◽  
pp. 378 ◽  
Author(s):  
Azahara Rodríguez-Luna ◽  
Javier Ávila-Román ◽  
María González-Rodríguez ◽  
María Cózar ◽  
Antonio Rabasco ◽  
...  

Microalgae represent a source of bio-active compounds such as carotenoids with potent anti-inflammatory and antioxidant properties. We aimed to investigate the effects of fucoxanthin (FX) in both in vitro and in vivo skin models. Firstly, its anti-inflammatory activity was evaluated in LPS-stimulated THP-1 macrophages and TNF-α-stimulated HaCaT keratinocytes, and its antioxidant activity in UVB-irradiated HaCaT cells. Next, in vitro and ex vivo permeation studies were developed to determine the most suitable formulation for in vivo FX topical application. Then, we evaluated the effects of a FX-containing cream on TPA-induced epidermal hyperplasia in mice, as well as on UVB-induced acute erythema in hairless mice. Our results confirmed the in vitro reduction of TNF-α, IL-6, ROS and LDH production. Since the permeation results showed that cream was the most favourable vehicle, FX-cream was elaborated. This formulation effectively ameliorated TPA-induced hyperplasia, by reducing skin edema, epidermal thickness, MPO activity and COX-2 expression. Moreover, FX-cream reduced UVB-induced erythema through down-regulation of COX-2 and iNOS as well as up-regulation of HO-1 protein via Nrf-2 pathway. In conclusion, FX, administered in a topical formulation, could be a novel natural adjuvant for preventing exacerbations associated with skin inflammatory pathologies as well as protecting skin against UV radiation.


Author(s):  
JENSON JACOB ◽  
SREEJITH K

Objectives: Plants from the family Sterculiaceae are used as folk medicine for treating various diseases in India. This study aims to determine the antioxidant and anti-inflammatory properties of Pterospermum rubiginosum and Pterospermum reticulatum of the family Sterculiaceae. The barks of P. rubiginosum and P. reticulatum are used in traditional medicine especially in the treatment of wounds, sprains, bone fracture, etc. This study, we compare the antioxidant and anti-inflammatory potentials of the stem bark of these two plants. Methods: The free radical scavenging assays such as 2,2–diphenyl,1–picrylhydrazyl (DPPH), 2,2’–azino-bis(3-ethylbenzothiozoline-6-sulfonic acid) (ABTS), hydroxyl radical, nitric oxide radical, phosphormolybdenum assay, and reducing power assay are used for the measurement of antioxidant potentials. The in vitro anti-inflammatory activities of the extracts are evaluated by means of lipoxygenase (LOX) and protease inhibition. Results: Both P. rubiginosum and P. reticulatum scavenge DPPH (70.10% and 91.02%), ABTS (94.48 and 98.19%), hydroxy (76.02 and 87.67%), and nitric oxide (87.02 and 80.84%) radicals. Phosphomolybdenum assay and reducing power assay, used for the measurement of antioxidant potentials also showed good results. Regarding the anti-inflammatory potential, the methanolic extract of the plants shows anti-protease activity (51.29 and 64.93%) and anti-LOX activity (56%) while P. rubiginosum does not exhibit anti-LOX activity. Conclusion: The above results demonstrate that the plants P. rubiginosum and P. reticulatum are rich source of antioxidant and anti-inflammatory compounds and it is the first report on theantioxidant and anti-inflammatory properties of the barks of these plants.


2019 ◽  
Vol 20 (10) ◽  
pp. 2579 ◽  
Author(s):  
Chang-Chih Chen ◽  
Chia-Jen Nien ◽  
Lih-Geeng Chen ◽  
Kuen-Yu Huang ◽  
Wei-Jen Chang ◽  
...  

Sapindus mukorossi seed oil is commonly used as a source for biodiesel fuel. Its phytochemical composition is similar to the extracted oil from Sapindus trifoliatus seeds, which exhibit beneficial effects for skin wound healing. Since S. mukorossi seed shows no cyanogenic property, it could be a potential candidate for the treatment of skin wounds. Thus, we evaluated the effectiveness of S. mukorossi seed oil in the treatment of skin wounds. We characterized and quantified the fatty acids and unsaponifiable fractions (including β-sitosterol and δ-tocopherol) contained in S. mukorossi seed-extracted oil by GC-MS and HPLC, respectively. Cell proliferation and migratory ability were evaluated by cell viability and scratch experiments using CCD-966SK cells treated with S. mukorossi oil. The anti-inflammatory effects of the oil were evaluated by measuring the nitric oxide (NO) production in lipopolysaccharide-treated RAW 264.7 cells. Antimicrobial activity tests were performed with Propionibacterium acnes, Staphylococcus aureus, and Candida albicans using a modified Japanese Industrial Standard procedure. Uniform artificial wounds were created on the dorsum of rats. The wounds were treated with a carboxymethyl cellulose (CMC)/hyaluronic acid (HA)/sodium alginate (SA) hydrogel for releasing the S. mukorossi seed oil. The wound sizes were measured photographically for 12 days and were compared to wounds covered with analogous membranes containing a saline solution. Our results showed that the S. mukorossi seed oil used in this study contains abundant monounsaturated fatty acids, β-sitosterol, and δ-tocopherol. In the in vitro tests, S. mukorossi seed oil prompted cell proliferation and migration capability. Additionally, the oil had significant anti-inflammatory and anti-microbial activities. In the in vivo animal experiments, S. mukorossi seed oil-treated wounds revealed acceleration of sequential skin wound healing events after two days of healing. The size of oil-treated wound decreased to half the size of the untreated control after eight days of healing. The results suggest that S. mukorossi seed oil could be a potential source for promoting skin wound healing.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2819 ◽  
Author(s):  
Fernando Pereira Beserra ◽  
Meilang Xue ◽  
Gabriela Maia ◽  
Ariane Leite Rozza ◽  
Cláudia Helena Pellizzon ◽  
...  

Skin wound healing is a dynamic and complex process involving several mediators at the cellular and molecular levels. Lupeol, a phytoconstituent belonging to the triterpenes class, is found in several fruit plants and medicinal plants that have been the object of study in the treatment of various diseases, including skin wounds. Various medicinal properties of lupeol have been reported in the literature, including anti-inflammatory, antioxidant, anti-diabetic, and anti-mutagenic effects. We investigated the effects of lupeol (0.1, 1, 10, and 20 μg/mL) on in vitro wound healing assays and signaling mechanisms in human neonatal foreskin keratinocytes and fibroblasts. Results showed that, at high concentrations, Lupeol reduced cell proliferation of both keratinocytes and fibroblasts, but increased in vitro wound healing in keratinocytes and promoted the contraction of dermal fibroblasts in the collagen gel matrix. This triterpene positively regulated matrix metalloproteinase (MMP)-2 and inhibited the NF-κB expression in keratinocytes, suggesting an anti-inflammatory effect. Lupeol also modulated the expression of keratin 16 according to the concentration tested. Additionally, in keratinocytes, lupeol treatment resulted in the activation of Akt, p38, and Tie-2, which are signaling proteins involved in cell proliferation and migration, angiogenesis, and tissue repair. These findings suggest that lupeol has therapeutic potential for accelerating wound healing.


2010 ◽  
Vol 298 (3) ◽  
pp. F754-F762 ◽  
Author(s):  
Haiping Wang ◽  
Haiying Liu ◽  
Zhunjun Jia ◽  
Curtis Olsen ◽  
Sheldon Litwin ◽  
...  

Nitroalkene derivatives of nitro-oleic acid (OA-NO2 ) are endogenous lipid products with potent anti-inflammatory properties in vitro. The present study was undertaken to evaluate the in vivo anti-inflammatory effect of OA-NO2 in mice given LPS. Two days before LPS administration, C57BL/6J mice were chronically infused with vehicle (LPS vehicle) or OA-NO2 (LPS OA-NO2) at 200 μg·kg−1·day−1 via osmotic minipumps; LPS was administered via a single intraperitoneal (ip) injection (10 mg/kg in saline). A third group received an ip injection of saline without LPS or OA-NO2 and served as controls. At 18 h of LPS administration, LPS vehicle mice displayed multiorgan dysfunction as evidenced by elevated plasma urea and creatinine (kidney), aspartate aminotransferase (AST) and alanine aminotransferase (ALT; liver), and lactate dehydrogenase (LDH) and reduced ejection fraction (heart). In contrast, the severity of multiorgan dysfunction was less in LPS OA-NO2 animals. The levels of circulating TNF-α and renal TNF-α mRNA expression, together with renal mRNA expression of monocyte chemoattractant protein-1, ICAM-1, and VCAM-1, and with renal mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase 2, and renal cGMP and PGE2 contents, were greater in LPS vehicle vs. control mice, but were attenuated in LPS OA-NO2 animals. Similar patterns of changes in the expression of inflammatory mediators were observed in the liver. Together, pretreatment with OA-NO2 ameliorated the inflammatory response and multiorgan injury in endotoxin-induced endotoxemia in mice.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1902
Author(s):  
Ariane Leite Rozza ◽  
Fernando Pereira Beserra ◽  
Ana Júlia Vieira ◽  
Eduardo Oliveira de Souza ◽  
Carlos Alberto Hussni ◽  
...  

Wound healing involves inflammatory, proliferative, and remodeling phases, in which various cells and chemical intermediates are involved. This study aimed to investigate the skin wound healing potential of menthol, as well as the mechanisms involved in its effect, after 3, 7, or 14 days of treatment, according to the phases of wound healing. Skin wound was performed in the back of Wistar rats, which were topically treated with vehicle cream; collagenase-based cream (1.2 U/g); or menthol-based cream at 0.25%, 0.5%, or 1.0% over 3, 7, or 14 days. Menthol cream at 0.5% accelerated the healing right from the inflammatory phase (3 days) by decreasing mRNA expression of inflammatory cytokines TNF-α and Il-6. At the proliferative phase (7 days), menthol 0.5% increased the activity of antioxidant enzymes SOD, GR, and GPx, as well as the level of GSH, in addition to decreasing the levels of inflammatory cytokines TNF-α, IL-6, and IL-1β and augmenting mRNA expression for Ki-67, a marker of cellular proliferation. At the remodeling phase (14 days), levels of inflammatory cytokines were decreased, and the level of Il-10 and its mRNA expression were increased in the menthol 0.5% group. Menthol presented skin wound healing activity by modulating the antioxidant system of the cells and the inflammatory response, in addition to stimulating epithelialization.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Sign in / Sign up

Export Citation Format

Share Document