Occurrence of the presence of hydroxylated triglycerides in seed oils extracted with pure CO2 by SFC-HRMS

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
J Duval ◽  
E Lesellier
Author(s):  
Ann Kiplagat Jepkorir ◽  
Charles Maina Irungu ◽  
Philip Bett Kendagor

All parts of A. indica (neem) and R. communis (castor) plants have mostly been used as natural remedies in the control and treatment of several ailments, control of pests and insects, animal feeds and production of industrial products globally. The seed oils of A. indica and R. communis are known to have antidiabetic, anti-helminthic, antifertility, antioxidant, antibacterial, anti-inflammatory, anti-cancer, insecticidal and mosquitocidal activity. This study reports for the first time the chemical composition of A. indica and R. communis seed oils from Marigat, Baringo County, Kenya. Seed oils of A. indica and R. communis were   extracted from mature dried seeds through cold pressing and boiling respectively and chemical composition determined using Gas Chromatography (GC)-Mass Spectrometry (MS).  The constituents of both seed oils were dominated by saturated and unsaturated fatty acids, cyclic esters and methyl esters. The predominant constituents of R. communis were (Z)-6-Octadecenoic acid (37.33%), Ricinoleic acid (30.22%) and 13-Hexyloxacyclotridec-10-en-2-one (26.67%) while those of A. indica were 2-hexyl-1-decanol (30.97%), Octadecanoic acid (29.69%) and Oxalic acid, 6-ethyloct-3-yl ethyl ester (15.55%). Oils contained Hexadecanoic acid and Octadecanoic acid which are used in the manufacture of several products such as candles, soaps, lotions, perfumes and cosmetics. Octadecenoic acid is important in control of human diseases and Ricinoleic acid in production of alkyd resins for surface coating and biofuel.  From the results, A. indica and R. communis seed oils constituents have potential in the agricultural, industrial, comestics and pharmaceutical sectors but require further fractionation to isolate the bioactive compounds.


2020 ◽  
Author(s):  
Mark Smith ◽  
Debbie Puttick ◽  
Carlene Sarvas
Keyword(s):  

2021 ◽  
Vol 111 ◽  
pp. 249-260
Author(s):  
Hossein Ahangari ◽  
Jerry W. King ◽  
Ali Ehsani ◽  
Mohammad Yousefi

1940 ◽  
Vol 61 (12) ◽  
pp. 1288-1291 ◽  
Author(s):  
Chuta HATA ◽  
Tatsuki KUNISAKI
Keyword(s):  

2019 ◽  
Vol 33 (6) ◽  
pp. 827-832
Author(s):  
Pingyuan Zhang ◽  
Bruce E. Branham

AbstractExperiments were conducted to evaluate the impact of spray volume, nozzle type, adjuvants, the presence of dew, and their interactions on foliar retention of creeping bentgrass. Tartrazine, a common food dye, was used as a tracer in this study. Increasing spray volume from 95 L ha−1 to 1,500 L ha−1 decreased foliar retention efficiency from 98% to approximately 85%. Compared with flat-fan nozzles, air-induction nozzles delivered similar retention efficiency at all spray volumes evaluated. However, flat-fan nozzles provided higher uniformity and more thorough coverage. Adding nonionic surfactants, organosilicone adjuvants, or methylated seed oils at typical concentrations yielded retention efficiency of approximately 90% to 93% regardless of spray volumes. In contrast, with water alone, increasing spray volume reduced retention efficiency from 95.9% to 87.3%. Simulated dew applied at 1,950 L ha−1 increased retention efficiency by approximately 3% when spray application volume was 190 L ha−1, while no difference was observed at 750 L ha−1. The presence of dew reduced the impact of adjuvants on retention efficiency. Large quantities of dew, 3,800 L ha−1, did reduce retention efficiency.


2018 ◽  
Vol 27 (4) ◽  
pp. 1031-1040 ◽  
Author(s):  
Carolina Médici Veronezi ◽  
Neuza Jorge

Sign in / Sign up

Export Citation Format

Share Document