Recent Advances in the Synthesis of Thiadiazoles

Synlett ◽  
2019 ◽  
Vol 30 (18) ◽  
pp. 2041-2050
Author(s):  
Yan Xiao ◽  
Song Sun ◽  
Jin-Tao Yu ◽  
Jiang Cheng

Thiadiazole moieties are present in many natural products and pharmaceutical compounds that possess a broad spectrum of biological activities, serving as antidepressant, anxiolytic, antimicrobial, antitubercular, antiinflammatory, antidiabetic, anticancer, antihypertensive, or antifungal drugs. Many excellent methods have been reported for accessing such frameworks. In this review, we summarize advances made within the past ten years in the synthesis of various types of thiadiazole.1 Introduction2 Synthesis of Thiadiazoles2.1 Synthesis of 1,2,3-Thiadiazoles2.1.1 Synthesis of 1,2,3-Thiadiazoles from Diazo/Azide Compounds2.1.2 Synthesis of 1,2,3-Thiadiazoles from Sulfonyl Hydrazines or N-Tosylhydrazones2.2 Synthesis of 1,2,4-Thiadiazoles2.2.1 Synthesis of 1,2,4-Thiadiazoles from Thioamides or their Derivatives2.2.2 Synthesis of 1,2,4-Thiadiazoles from Amidines or 2-Aminopyridines2.3 Synthesis of 1,3,4-Thiadiazoles2.4 Synthesis of 1,2,5-Thiadiazoles3 Conclusion

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 249
Author(s):  
Raquel G. Soengas ◽  
Humberto Rodríguez-Solla

The 1,3-butadiene motif is widely found in many natural products and drug candidates with relevant biological activities. Moreover, dienes are important targets for synthetic chemists, due to their ability to give access to a wide range of functional group transformations, including a broad range of C-C bond-forming processes. Therefore, the stereoselective preparation of dienes have attracted much attention over the past decades, and the search for new synthetic protocols continues unabated. The aim of this review is to give an overview of the diverse methodologies that have emerged in the last decade, with a focus on the synthetic processes that meet the requirements of efficiency and sustainability of modern organic chemistry.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Amita Verma ◽  
Sunil Joshi ◽  
Deepika Singh

Imidazoles have occupied a unique position in heterocyclic chemistry, and its derivatives have attracted considerable interests in recent years for their versatile properties in chemistry and pharmacology. Imidazole is nitrogen-containing heterocyclic ring which possesses biological and pharmaceutical importance. Thus, imidazole compounds have been an interesting source for researchers for more than a century. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine, and nucleic acid. Being a polar and ionisable aromatic compound, it improves pharmacokinetic characteristics of lead molecules and thus is used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. There are several methods used for the synthesis of imidazole-containing compounds, and also their various structure reactions offer enormous scope in the field of medicinal chemistry. The imidazole derivatives possess extensive spectrum of biological activities such as antibacterial, anticancer, antitubercular, antifungal, analgesic, and anti-HIV activities. This paper aims to review the biological activities of imidazole during the past years.


Author(s):  
Shivani Mithula ◽  
Adinarayana Nandikolla ◽  
Sankaranarayanan Murugesan ◽  
Venkata GCS Kondapalli

Among all nitrogen-containing heterocycles, the 1,8-naphthyridine scaffold has recently gained an immense amount of curiosity from numerous researchers across fields of medicinal chemistry and drug discovery. This new attention can be ascribed to its versatility of synthesis, its reactiveness and the variety of biological activities it has exhibited. Over the past half-decade, numerous diverse biological evaluations have been conducted on 1,8-naphthyridine and its derivatives in a quest to unravel novel pharmacological facets to this scaffold. Its potency to treat neurodegenerative and immunomodulatory disorders, along with its anti-HIV, antidepressant and antioxidant properties, has enticed researchers to look beyond its broad-spectrum activities, providing further scope for exploration. This review is a consolidated update of previous works on 1,8-naphthyridines and their analogs, focusing on the past 5 years.


2022 ◽  
Author(s):  
Loleny Tavares ◽  
Slim SMAOUI ◽  
Cristian Pinilla ◽  
Hajer Ben Hlima ◽  
Helio Lopes Barros

Recently, studies on natural products have considerably increased due to their exceptional biological activities and health benefits. Subsequently, their pharmacological attributes have played an immense role in detecting natural and...


2016 ◽  
Vol 11 (11) ◽  
pp. 1934578X1601101 ◽  
Author(s):  
Di Yang ◽  
Wanwan Jia ◽  
Yi Zhun Zhu

Herba Leonuri, also named Chinese Motherwort, has been extensively investigated as an effective agent on the uterus system. Our group has been studying the natural products of Herba Leonuri for several years, and during this period, many biological activities of the drug were recognized. Leonurine (4-guanidino- N-butyl-syringate) is an alkaloid present in Herba Leonuri. Recently, growing evidence has highlighted the therapeutic potential of leonurine in multiple diseases, especially cardiovascular. In this review, we discuss the biological activities of leonurine, as well as recent advances involving this alkaloid.


Synthesis ◽  
2018 ◽  
Vol 50 (06) ◽  
pp. 1175-1198 ◽  
Author(s):  
Laurent Commeiras ◽  
Muhammad Idham Darussalam Mardjan ◽  
Jean-Luc Parrain

α,β-Unsaturated γ-hydroxy-γ-butyrolactams are of a great interest due to their presence in designed pharmaceutical molecules and numerous natural products displaying a broad spectrum of biological activities. In addition, these five-membered heterocyclic compounds are also relevant and versatile building blocks in organic synthesis. In this context, strategies for the construction of these scaffolds has triggered considerable attention and this review highlights the progress in the formation of α,β-unsaturated γ-hydroxy-γ-butyrolactams (5-hydroxy-1,5-dihydro-2H-pyrrol-2-ones).1 Introduction2 Intramolecular Routes3 Intermolecular Routes4 Oxidation of Heterocyclic Compounds5 Miscellaneous6 Conclusion


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1909 ◽  
Author(s):  
Nagaraju Kerru ◽  
Lalitha Gummidi ◽  
Suresh Maddila ◽  
Kranthi Kumar Gangu ◽  
Sreekantha B. Jonnalagadda

The analogs of nitrogen-based heterocycles occupy an exclusive position as a valuable source of therapeutic agents in medicinal chemistry. More than 75% of drugs approved by the FDA and currently available in the market are nitrogen-containing heterocyclic moieties. In the forthcoming decade, a much greater share of new nitrogen-based pharmaceuticals is anticipated. Many new nitrogen-based heterocycles have been designed. The number of novel N-heterocyclic moieties with significant physiological properties and promising applications in medicinal chemistry is ever-growing. In this review, we consolidate the recent advances on novel nitrogen-containing heterocycles and their distinct biological activities, reported over the past one year (2019 to early 2020). This review highlights the trends in the use of nitrogen-based moieties in drug design and the development of different potent and competent candidates against various diseases.


2013 ◽  
Vol 8 (7) ◽  
pp. 1934578X1300800
Author(s):  
Abdelatif ElMarrouni ◽  
Amandine Kolleth ◽  
Raphael Lebeuf ◽  
Julian Gebauer ◽  
Sébastien Prevost ◽  
...  

Lyngbouilloside and the related macrolides lyngbyaloside lyngbyaloside B and lyngbyaloside C have attracted a lot of attention over the past decade due to their intriguing architecture their natural scarcity and their potential biological activities. This review aims to showcase the various strategies that have been used to access these natural products.


2020 ◽  
Author(s):  
Jordana T. Brito ◽  
Lucas H. Martorano ◽  
Ana Carolina F. de Albuquerque ◽  
Carlos Magno Rocha Ribeiro ◽  
Rodolfo Goetze Fiorot ◽  
...  

In the past, structure determination of natural products was an arduous process depending almost entirely on chemical synthesis, mainly by derivatization and degradation processes, taking years of effort. Recently, structural elucidation of natural products has undergone a revolution. Nowadays, with the combined use of different advanced spectroscopic methods, it became possible to completely assign the structure of natural products using small amounts of sample. However, despite the extraordinary ongoing advances in spectroscopy, the mischaracterization of natural products has been and remains a recurrent problem, especially in the presence of several chiral centers. The misinterpretation of NMR data has resulted in frequent reports addressing the issue of structural reassignment. In this context, a great effort has been devoted to the development of quantum chemical calculations to predict NMR parameters, and thus achieve a more accurate spectral interpretation. In this work, we applied a protocol for theoretical calculations of 1H NMR chemical shifts in order to establish the correct and unequivocal structure of Helianuol L, a member of the Heliannuol’s class, isolated from Helianthus annus. These secondary metabolites present a broad spectrum of biological activities, including the allelochemical activity, making them promising candidates as natural agrochemicals. It is worth mentioning, however, that the process of elucidating the structure of Heliannuol L was based on structural correlations with molecules already known in the literature, where few stereochemical analyses were performed. In this way, based on the fact that other compounds of the Heliannuol’s class had their structure previously reassigned, the verification of the proposed structure of Heliannuol L becomes of great importance.


2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Bidyut Kumar Senapati

Benzofuran is the heterocyclic compound consisting of fused benzene and furan rings. The benzofuran moiety is widely distributed in both natural and artificial molecules. Substituted benzofurans are pharmaceutically important heterocycles that display numerous biological activities such as antimicrobial, antifungal, antiHIV, anticancer, antimalarial, anti-inflammatory activities. Some derivatives of benzofurans are also used as organic materials due to their optical and electronic properties. Owing to their broad spectrum applications, it is of great significance to develop systematic and novel approaches to benzofurans. During the past decades, many synthetic efforts have been devoted so far to the synthesis of benzofuran derivatives. The present review highlights the recently synthesized benzofurans and their biological activities.


Sign in / Sign up

Export Citation Format

Share Document