Effect of clotting factors concentrates on lymphocyte and neutrophil function in vitro

2003 ◽  
Vol 89 (02) ◽  
pp. 365-373 ◽  
Author(s):  
Massimo Ghio ◽  
Paola Contini ◽  
Luciano Ottonello ◽  
Nicoletta Arduino ◽  
Alessandro Gringeri ◽  
...  

SummaryImmunological abnormalities have been reported in haemophiliacs. Although infections with HIV, hepatitis and other viruses may contribute to these abnormalities, immune defects are detectable also in HIV seronegative haemophiliacs. It is likely that chronic exposure to extraneous proteins in clotting factor concentrates (CFCs) may play a role in immunomodulation, but the underlying mechanisms remain unclear. The results of the present paper show that: a) soluble HLA class I (sHLA-I), soluble Fas-ligand (sFas-L) and transforming growth factor beta 1 (TGF-β1) are detectable in plasma derived but not in recombinant CFCs; b) the level of sHLA-I and sFas-L is proportional to the grade of CFCs purity whereas TGF-β1 showed very variable levels; c) soluble molecules detected in CFCs exert immunomodulatory effects in vitro like apoptosis induction in Jurkat cells and inhibition of mixed lymphocyte reaction response, antigen-specific lymphocyte cytotoxic activity and neutrophil chemotaxis.

Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 260 ◽  
Author(s):  
Qing Zhang ◽  
Xiaonan Hou ◽  
Bradley Evans ◽  
Jamison VanBlaricom ◽  
Saravut Weroha ◽  
...  

Transforming growth factor beta (TGF-β) signaling has pleiotropic functions regulating cancer initiation, development, and metastasis, and also plays important roles in the interaction between stromal and cancer cells, making the pathway a potential therapeutic target. LY2157299 monohydrate (LY), an inhibitor of TGF-β receptor I (TGFBRI), was examined for its ability to inhibit ovarian cancer (OC) growth both in high-grade serous ovarian cancer (HGSOC) cell lines and xenograft models. Immunohistochemistry, qRT-PCR, and Western blot were performed to study the effect of LY treatment on expression of cancer- and fibroblast-derived genes. Results showed that exposure to TGF-β1 induced phosphorylation of SMAD2 and SMAD3 in all tested OC cell lines, but this induction was suppressed by pretreatment with LY. LY alone inhibited the proliferation, migration, and invasion of HGSOC cells in vitro. TGF-β1-induced fibroblast activation was blocked by LY. LY also delayed tumor growth and suppressed ascites formation in vivo. In addition, independent of tumor inhibition, LY reduces ascites formation in vivo. Using OVCAR8 xenograft specimens we confirmed the inhibitory effect of LY on TGF-β signaling and tumor stromal expression of collagen type XI chain 1 (COL11A1) and versican (VCAN). These observations suggest a role for anti-TGF-β signaling-directed therapy in ovarian cancer.


2016 ◽  
Vol 38 (5) ◽  
pp. 1928-1938 ◽  
Author(s):  
Mian Cheng ◽  
Gang Wu ◽  
Yue Song ◽  
Lin Wang ◽  
Ling Tu ◽  
...  

Backgroud: Myocardial fibrosis results in myocardial remodelling and dysfunction. Celastrol, a traditional oriental medicine, has been suggested to have cardioprotective effects. However, its underlying mechanism is unknown. This study investigated the ability of celastrol to prevent cardiac fibrosis and dysfunction and explored the underlying mechanisms. Methods: Animal and cell models of cardiac fibrosis were used in this study. Myocardial fibrosis was induced by transverse aortic constriction (TAC) in mice. Cardiac hypertrophy and fibrosis were evaluated based on histological and biochemical measurements. Cardiac function was evaluated by echocardiography. The levels of transforming growth factor beta 1 (TGF-β1), extracellular signal regulated kinases 1/2 (ERK1/2) signalling were measured using Western blotting, while the expression of miR-21was analyzed by real-time qRT-PCR in vitro and in vivo. In vitro studies, cultured cardiac fibroblasts (CFs) were treated with TGF-β1 and transfected with microRNA-21(miR21). Results: Celastrol treatment reduced the increased collagen deposition and down-regulated α-smooth muscle actin (α-SMA), atrial natriuretic peptide (ANP), brain natriuretic peptides (BNP), beta-myosin heavy chain (β-MHC), miR-21 and p-ERK/ERK. Cardiac dysfunction was significantly attenuated by celastrol treatment in the TAC mice model. Celastrol treatment reduced myocardial fibroblast viability and collagen content and down-regulated α-SMA in cultured CFs in vitro. Celastrol also inhibited the miR-21/ERK signalling pathway. Celastrol attenuated miR-21 up-regulation by TGF-β1 and decreased elevated p-ERK/ERK levels in CFs transfected with miR-21. Conclusion: MiR-21/ERK signalling could be a potential therapeutic pathway for the prevention of myocardial fibrosis. Celastrol ameliorates myocardial fibrosis and cardiac dysfunction, these probably related to miR-21/ERK signaling pathways in vitro and in vivo.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1445-1453 ◽  
Author(s):  
Leonhard X. Heinz ◽  
Barbara Platzer ◽  
Peter M. Reisner ◽  
Almut Jörgl ◽  
Sabine Taschner ◽  
...  

Langerhans cells (LCs) are highly abundant dendritic cells (DCs) in epidermal and mucosal tissues. The transcription factors PU.1 and Id2 have been implicated as positive regulators of LC development from hematopoietic progenitor cells. LC differentiation from progenitors is absolutely dependent on transforming growth factor beta 1 (TGF-β1) in vitro as well as in vivo; however, downstream mechanisms are poorly defined. We found that both PU.1 and Id2 are induced by TGF-β1 in human CD34+ monocyte/LC (M/LC) progenitor cells, and that neither ectopic PU.1 or Id2 alone, nor both together, could replace TGF-β1 in its instructive function on LC commitment. However, both factors critically contributed to LC differentiation by acting at 2 distinct intersection points. Ectopic PU.1 strongly enhanced TGF-β1-dependent LC development. Additionally, Notch-induced generation of interstitial-type DCs was associated with PU.1 up-regulation. Thus, PU.1 is generally increased during myeloid DC development. Ectopic Id2 inhibits the acquisition of early monocytic characteristics by cells generated in the absence of TGF-β1 and also inhibits monocyte induction by alternative stimuli. Since TGF-β1 represses a default monocyte pathway of common progenitor cells, PU.1 and Id2 seem to modulate lineage options of M/LC precursors, downstream of TGF-β1.


2020 ◽  
Vol 9 (11) ◽  
pp. 742-750
Author(s):  
La Li ◽  
Shiqi Xiang ◽  
Bing Wang ◽  
Hang Lin ◽  
Guorui Cao ◽  
...  

Aims Dystrophic calcification (DC) is the abnormal appearance of calcified deposits in degenerating tissue, often associated with injury. Extensive DC can lead to heterotopic ossification (HO), a pathological condition of ectopic bone formation. The highest rate of HO was found in combat-related blast injuries, a polytrauma condition with severe muscle injury. It has been noted that the incidence of HO significantly increased in the residual limbs of combat-injured patients if the final amputation was performed within the zone of injury compared to that which was proximal to the zone of injury. While aggressive limb salvage strategies may maximize the function of the residual limb, they may increase the possibility of retaining non-viable muscle tissue inside the body. In this study, we hypothesized that residual dead muscle tissue at the zone of injury could promote HO formation. Methods We tested the hypothesis by investigating the cellular and molecular consequences of implanting devitalized muscle tissue into mouse muscle pouch in the presence of muscle injury induced by cardiotoxin. Results Our findings showed that the presence of devitalized muscle tissue could cause a systemic decrease in circulating transforming growth factor-beta 1 (TGF-β1), which promoted DC formation following muscle injury. We further demonstrated that suppression of TGF-β signalling promoted DC in vivo, and potentiated osteogenic differentiation of muscle-derived stromal cells in vitro. Conclusion Taken together, these findings suggest that TGF-β1 may play a protective role in dead muscle tissue-induced DC, which is relevant to understanding the pathogenesis of post-traumatic HO. Cite this article: Bone Joint Res 2020;9(11):742–750.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuchen Zhang ◽  
Junqing Liu ◽  
Ting Zou ◽  
Yubingqing Qi ◽  
Baicheng Yi ◽  
...  

Abstract Background Maintaining the stability and maturation of blood vessels is of paramount importance for the vessels to carry out their physiological function. Smooth muscle cells (SMCs), pericytes, and mesenchymal stem cells (MSCs) are involved in the maturation process of the newly formed vessels. The aim of this study was to investigate whether transforming growth factor beta 1 (TGF-β1) treatment could enhance pericyte-like properties of dental pulp stem cells (DPSCs) and how TGF-β1-treated DPSCs for 7 days (T-DPSCs) stabilize the newly formed blood vessels. Methods We utilized TGF-β1 to treat DPSCs for 1, 3, 5, and 7 days. Western blotting and immunofluorescence were used to analyze the expression of SMC markers. Functional contraction assay was conducted to assess the contractility of T-DPSCs. The effects of T-DPSC-conditioned media (T-DPSC-CM) on human umbilical vein endothelial cell (HUVEC) proliferation and migration were examined by MTT, wound healing, and trans-well migration assay. Most importantly, in vitro 3D co-culture spheroidal sprouting assay was used to investigate the regulating role of vascular endothelial growth factor (VEGF)-angiopoietin (Ang)-Tie2 signaling on angiogenic sprouting in 3D co-cultured spheroids of HUVECs and T-DPSCs. Angiopoietin 2 (Ang2) and VEGF were used to treat the co-cultured spheroids to explore their roles in angiogenic sprouting. Inhibitors for Tie2 and VEGFR2 were used to block Ang1/Tie2 and VFGF/VEGFR2 signaling. Results Western blotting and immunofluorescence showed that the expression of SMC-specific markers (α-SMA and SM22α) were significantly increased after treatment with TGF-β1. Contractility of T-DPSCs was greater compared with that of DPSCs. T-DPSC-CM inhibited HUVEC migration. In vitro sprouting assay demonstrated that T-DPSCs enclosed HUVECs, resembling pericyte-like cells. Compared to co-culture with DPSCs, a smaller number of HUVEC sprouting was observed when co-cultured with T-DPSCs. VEGF and Ang2 co-stimulation significantly enhanced sprouting in HUVEC and T-DPSC co-culture spheroids, whereas VEGF or Ang2 alone exerted insignificant effects on HUVEC sprouting. Blocking Tie2 signaling reversed the sprouting inhibition by T-DPSCs, while blocking VEGF receptor (VEGFR) signaling boosted the sprouting inhibition by T-DPSCs. Conclusions This study revealed that TGF-β1 can induce DPSC differentiation into functional pericyte-like cells. T-DPSCs maintain vessel stability through Ang1/Tie2 and VEGF/VEGFR2 signaling.


Author(s):  
Priyanka Grover ◽  
Sritama Nath ◽  
Mukulika Bose ◽  
Alexa J. Sanders ◽  
Cory Brouwer ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDA) is one of the most lethal human cancers. Transforming Growth Factor Beta (TGF-β) is a cytokine that switches from a tumor-suppressor to a tumor promoter throughout tumor development, by a yet unknown mechanism. Tumor associated MUC1 (tMUC1) is aberrantly glycosylated and overexpressed in >80% of PDAs and is associated with poor prognosis. The cytoplasmic tail of MUC1 (MUC1-CT) interacts with other oncogenic proteins promoting tumor progression and metastasis. We hypothesize that tMUC1 levels regulate TGF-β functions in PDA in vitro and in vivo. We report that high-tMUC1 expression positively correlates to TGF-βRII and negatively to TGF-βRI receptors. In response to TGF-β1, high tMUC1 expressing PDA cells undergo c-Src phosphorylation, and activation of the Erk/MAPK pathway; while low tMUC1 expressing cells activate the Smad2/3 pathway, enhancing cell death. Correspondingly, mice bearing tMUC1-high tumors responded to TGF-β1 neutralizing antibody in vivo showing significantly retarded tumor growth. Analysis of clinical data from TCGA revealed significant alterations in gene-gene correlations in the TGF-β pathway in tMUC1 high versus tMUC1 low samples. This study deepens our understanding of tMUC1-regulated TGF-β’s paradoxical function in PDA and establishes tMUC1 as a potential biomarker to predict response to TGF-β-targeted therapies.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 461
Author(s):  
Jorge Gallego-Valle ◽  
Sergio Gil-Manso ◽  
Ana Pita ◽  
Esther Bernaldo-de-Quirós ◽  
Rocío López-Esteban ◽  
...  

Regulatory T cells (Tregs), which are characterized by the expression of the transcription factor forkhead box P3 (FOXP3), are the main immune cells that induce tolerance and are regulators of immune homeostasis. Natural Treg cells (nTregs), described as CD4+CD25+FOXP3+, are generated in the thymus via activation and cytokine signaling. Transforming growth factor beta type 1 (TGF-β1) is pivotal to the generation of the nTreg lineage, its maintenance in the thymus, and to generating induced Treg cells (iTregs) in the periphery or in vitro arising from conventional T cells (Tconvs). Here, we tested whether TGF-β1 treatment, associated with interleukin-2 (IL-2) and CD3/CD28 stimulation, could generate functional Treg-like cells from human thymocytes in vitro, as it does from Tconvs. Additionally, we genetically manipulated the cells for ectopic FOXP3 expression, along with the TGF-β1 treatment. We demonstrated that TGF-β1 and ectopic FOXP3, combined with IL-2 and through CD3/CD28 activation, transformed human thymocytes into cells that expressed high levels of Treg-associated markers. However, these cells also presented a lack of homogeneous suppressive function and an unstable proinflammatory cytokine profile. Therefore, thymocyte-derived cells, activated with the same stimuli as Tconvs, were not an appropriate alternative for inducing cells with a Treg-like phenotype and function.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 819
Author(s):  
Garam Choi ◽  
Hyeongjin Na ◽  
Da-Sol Kuen ◽  
Byung-Seok Kim ◽  
Yeonseok Chung

Transforming growth factor beta 1 (TGF-β1) is an immunosuppresive cytokine that plays an essential role in immune homeostasis. It is well known that regulatory T (Treg) cells express TGF-β1; however, the role of autocrine TGF-β1 in the development, function, and stability of Treg cells remains poorly understood. We found that Treg cell-derived TGF-β1 was not required for the development of thymic Treg cells in mice, but played a role in the expression of latency-associated peptide and optimal suppression of naïve T cell proliferation in vitro. Moreover, the frequency of Treg cells was significantly reduced in the mesenteric lymph nodes of the Treg cell-specific TGF-β1-deficient mice, which was associated with increased frequency of IFN-γ-producers among Treg cells. TGF-β1-deficient Treg cells were more prone to express IFN-γ than TGF-β1-sufficient Treg cells in a dendritic cell-mediated stimulation in vitro as well as in an adoptive transfer study in vivo. Mechanistically, TGF-β1-deficient Treg cells expressed higher levels of Il12rb2 and were more sensitive to IL-12-induced conversion into IFN-γ-producing Treg cells or IFN-γ-producing exTreg cells than TGF-β1-sufficient Treg cells. Our findings demonstrate that autocrine TGF-β1 plays a critical role in the optimal suppressive activity and stability of Treg cells by downregulating IL-12R on Treg cells.


2020 ◽  
Author(s):  
Er Nie ◽  
Xin Jin ◽  
Faan Miao ◽  
Tianfu Yu ◽  
Tongle Zhi ◽  
...  

Abstract Background Our previous studies have indicated that miR-198 reduces cellular methylguanine DNA methyltransferase (MGMT) levels to enhance temozolomide sensitivity. Transforming growth factor beta 1 (TGF-β1) switches off miR-198 expression by repressing K-homology splicing regulatory protein (KSRP) expression in epidermal keratinocytes. However, the underlying role of TGF-β1 in temozolomide resistance has remained unknown. Methods The distribution of KSRP was detected by western blotting and immunofluorescence. Microarray analysis was used to compare the levels of long noncoding RNAs (lncRNAs) between TGF-β1–treated and untreated cells. RNA immunoprecipitation was performed to verify the relationship between RNAs and KSRP. Flow cytometry and orthotopic and subcutaneous xenograft tumor models were used to determine the function of TGF-β1 in temozolomide resistance. Results Overexpression of TGF-β1 contributed to temozolomide resistance in MGMT promoter hypomethylated glioblastoma cells in vitro and in vivo. TGF-β1 treatment reduced cellular MGMT levels through suppressing the expression of miR-198. However, TGF-β1 upregulation did not affect KSRP expression in glioma cells. We identified and characterized 2 lncRNAs (H19 and HOXD-AS2) that were upregulated by TGF-β1 through Smad signaling. H19 and HOXD-AS2 exhibited competitive binding to KSRP and prevented KSRP from binding to primary miR-198, thus decreasing miR-198 expression. HOXD-AS2 or H19 upregulation strongly promoted temozolomide resistance and MGMT expression. Moreover, KSRP depletion abrogated the effects of TGF-β1 and lncRNAs on miR-198 and MGMT. Finally, we found that patients with low levels of TGF-β1 or lncRNA expression benefited from temozolomide therapy. Conclusions Our results reveal an underlying mechanism by which TGF-β1 confers temozolomide resistance. Furthermore, our findings suggest that a novel combination of temozolomide with a TGF-β inhibitor may serve as an effective therapy for glioblastomas.


Sign in / Sign up

Export Citation Format

Share Document