In Vivo Studies On The Inhibition Of Coagulation By A Heparin Analogue

1981 ◽  
Author(s):  
U Schmitz-Huebner ◽  
F Asbeck ◽  
J van de Loo

SSHA, a semi-synthetic heparin analogue belonging to the chondroitin family, was reported to induce considerable anti-Xa activity in vivo being practically inactive in vitro. In a study designed to elucidate further the in vivo effects of this drug, SSHA and sodium heparin from porcine intestinal mucosa were injected subcutaneously into six volunteers on separate occasions over a period of three days in a cross-over trial. Before injection and 2,4,6,8 hours afterwards, the heparin-like activity was measured by means of the APTT, the anti -Xa clotting test and two chromogenic substrate assays. The results show that SSHA mediates both anti-Xa and antithrombin activities in vivo. A comparison between the effects of SSHA and heparin is problematical, due to the heterogeneity of different heparin preparations. Low doses of the analogue (45 mg s.c.) induce proportionally higher and longer lasting anti-Xa activities than higher doses (90 mg s.c.). In an attempt to identify the mediator involved in the anticoagulant activity induced by SSHA in vivo, antithrombin III AT III) was removed from a plasma sample of one the subjects obtaining SSHA injections by immunosorption using Sepharose IVb coupled with antibodies against AT III. The AT III free plasma obtained was found to be devoid of heparin-like activity in the anti-Xa clotting test but it maintained its anticoagulant activity in the APTT assay. When purified AT III was added to this plasma its anti-Xa activity was largely restored. In conclusion, the inhibitory effect of SSHA on coagulation seems to involve at least two mechanisms: a direct one which does not depend on AT III and an indirect one, induced in vivo and mediated by AT III.

2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2223
Author(s):  
Manon Dominique ◽  
Nicolas Lucas ◽  
Romain Legrand ◽  
Illona-Marie Bouleté ◽  
Christine Bôle-Feysot ◽  
...  

CLPB (Caseinolytic peptidase B) protein is a conformational mimetic of α-MSH, an anorectic hormone. Previous in vivo studies have already shown the potential effect of CLPB protein on food intake and on the production of peptide YY (PYY) by injection of E. coli wild type (WT) or E. coli ΔClpB. However, until now, no study has shown its direct effect on food intake. Furthermore, this protein can fragment naturally. Therefore, the aim of this study was (i) to evaluate the in vitro effects of CLPB fragments on PYY production; and (ii) to test the in vivo effects of a CLPB fragment sharing molecular mimicry with α-MSH (CLPB25) compared to natural fragments of the CLPB protein (CLPB96). To do that, a primary culture of intestinal mucosal cells from male Sprague–Dawley rats was incubated with proteins extracted from E. coli WT and ΔCLPB after fragmentation with trypsin or after a heat treatment of the CLPB protein. PYY secretion was measured by ELISA. CLPB fragments were analyzed by Western Blot using anti-α-MSH antibodies. In vivo effects of the CLPB protein on food intake were evaluated by intraperitoneal injections in male C57Bl/6 and ob/ob mice using the BioDAQ® system. The natural CLPB96 fragmentation increased PYY production in vitro and significantly decreased cumulative food intake from 2 h in C57Bl/6 and ob/ob mice on the contrary to CLPB25. Therefore, the anorexigenic effect of CLPB is likely the consequence of enhanced PYY secretion.


1999 ◽  
Vol 90 (6) ◽  
pp. 1723-1732. ◽  
Author(s):  
Paul A. Iaizzo ◽  
Brooks A. Johnson ◽  
Kaoru Nagao ◽  
William J. Gallagher

Background Chlorocresols are used as preservatives in numerous commercial drugs that have been shown to induce myoplasmic Ca2+ release; the most potent isoform is 4-chloro-m-cresol. The aims of this study were to (1) examine the in vivo effects of 4-chloro-m-cresol on swine susceptible to malignant hyperthermia and (2) contrast in vivo versus in vitro dose-response curves. Methods Susceptible swine (weight: 38.5 kg+/-3.55 kg) were anesthetized and monitored for variations in physiological responses, including end-tidal CO2, heart rate, blood pressure, blood chemistry, and temperatures. In the first animals studied, 4-chloro-m-cresol, at equivalent cumulative doses of 0.14, 0.28, 0.57, 1.14, 2.27, 4.54, and 9.08 mg/kg (n = 3; 12.5, 25, 50, 100, 200, 400, and 800 micromol) were administered, and in a second group, larger doses were used: 1.14, 3.41, 7.95, 17.04 (n = 4), and/or 35.22 (n = 1) mg/kg (100, 300, 700, 1,500, and/or 3,100 micromol). For comparison, in vitro rectus abdominis muscle preparations obtained from normal and susceptible swine were exposed to 4-chloro-m-cresol, at cumulative concentrations of 6.25, 12.5, 25, 50, 100, 200, 400, 800, and 1,600 micromol; standard caffeine and halothane contracture testing was also performed. Results Episodes of malignant hyperthermia were not triggered in response to administration of low doses of 4-chloro-m-cresol, but transient cardiovascular reactions (e.g., tachycardia, arrhythmias, and hypotension) were observed. Subsequently, episodes in these animals were triggered when halothane (0.87; 1 MAC) and succinylcholine (2 mg/kg) were given. Animals administered the higher doses of 4-chloro-m-cresol all had fulminant episodes of malignant hyperthermia that were fatal, when equivalent cumulative concentrations were greater than 1,500 micromol. The levels of 4-chloro-m-cresol in the plasma rapidly decreased: e.g., 5 min postadministration of the 1,500-micromol dose, the mean plasma level was only 52+/-18 micromol (n = 4). Hemolysis was detected following 4-chloro-m-cresol administration at concentrations > 200 micromol. In vitro, muscle from susceptible animals elicited contractures > 200 mg at 50-micromol bath concentrations of 4-chloro-m-cresol (n = 29), whereas normal muscle did not elicit such contractures until bath concentrations were > 800 micromol (n = 10). Conclusions 4-chloro-m-cresol is a trigger of malignant hyperthermia in susceptible swine, but only when serum concentrations are far above those likely to be encountered in humans. A relatively low concentration of 4-chloro-m-cresol, 50 micromol, is sufficient to activate sarcoplasmic [Ca+2] release in vitro (e.g., contractures); this same bolus dose administered in vivo (0.57 mg/kg) has minimal effects due to the rapid decrease in its plasma levels.


2016 ◽  
Vol 94 (7) ◽  
pp. 788-796 ◽  
Author(s):  
Bhawana Gupta ◽  
Sabyasachi Chakraborty ◽  
Soumya Saha ◽  
Sunita Gulabsingh Chandel ◽  
Atul Kumar Baranwal ◽  
...  

Shikonin possess a diverse spectrum of pharmacological properties in multiple therapeutic areas. However, the nociceptive effect of shikonin is not largely known. To investigate the antinociceptive potential of shikonin, panel of GPCRs, ion channels, and enzymes involved in pain pathogenesis were studied. To evaluate the translation of shikonin efficacy in vivo, it was tested in 3 established rat pain models. Our study reveals that shikonin has significant inhibitory effect on pan sodium channel/N1E115 and NaV1.7 channel with half maximal inhibitory concentration (IC50) value of 7.6 μmol/L and 6.4 μmol/L, respectively, in a cell-based assay. Shikonin exerted significant dose dependent antinociceptive activity at doses of 0.08%, 0.05%, and 0.02% w/v in pinch pain model. In mechanical hyperalgesia model, dose of 10 and 3 mg/kg (intraperitoneal) produced dose-dependent analgesia and showed 67% and 35% reversal of hyperalgesia respectively at 0.5 h. Following oral administration, it showed 39% reversal at 30 mg/kg dose. When tested in first phase of formalin induced pain, shikonin at 10 mg/kg dose inhibited paw flinching by ∼71%. In all studied preclinical models, analgesic effect was similar or better than standard analgesic drugs. The present study unveils the mechanistic role of shikonin on pain modulation, predominantly via sodium channel modulation, suggesting that shikonin could be developed as a potential pain blocker.


1977 ◽  
Author(s):  
Christine N. Vogel ◽  
Kingdon S. Henry ◽  
Roger L. Lundblad

Our intention is to study the interaction of rabbit thrombin with antithrombin III (AT-III) in vitro and in vivo. After activation of crude prothrombin with tissue thromboplastin and CaCl2, thrombin was purified and showed two species of thrombin with molecular weights of 36,000 and 39,000 daltons as determined by sodium dodecyl sulfate discontinuous gel electrophoresis. Rabbit AT-III was purified using a heparin agarose column and had a molecular weight of 55,000 daltons. The inhibition of thrombin by AT-III was followed by fibrinogen clotting assays and an AT-III-thrombin complex was observed on gel electrophoresis. For the in vivo studies both thrombin and AT-III were radiolabelled with Na125i using the solid state lactoperoxidase method and retained 99% of the pre-iodinated specific activity. Radiolabelled thrombin and a radiolabelled AT-III-thrombin complex were injected into different rabbits. The rate of removal of both was very similar with a half-life of approximately 9 hours. When radiolabelled AT-III was injected, the half-life was approximately 60 hours. Since the disappearance rate of thrombin more closely approximates that of the preformed AT-III-thrombin complex and is clearly shorter than the turnover rate of AT-III, the possibility is raised that thrombin combines in vivo with a native inhibitor such as AT-III and may in fact be removed from the circulation as a complex rather than as a native molecule.


Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582093942
Author(s):  
Muhammad Younus ◽  
Muhammad Mohtasheem ul Hasan ◽  
Khalil Ahmad ◽  
Ali Sharif ◽  
Hafiz Muhammad Asif ◽  
...  

In this study, we aimed to investigate the antidiabetic effects of Euphorbia nivulia (En), native to Cholistan Desert area of Bahawalpur, Pakistan. First, we performed high-performance liquid chromatography analysis and found that this plant contains ferulic acid, gallic acid, quercetin, benzoic acid, polyphenols, and flavonoids. Then, we performed in vitro and in vivo studies to assess its effects on diabetic Wistar rat model. The experiments were performed and compared with control drug glibenclamide. The 70% hydroalcoholic extract of En exhibited 97.8% in vitro α-glucosidase inhibitory effect at a dose of 1.0 mg/mL. We orally administered the extract of En and control drug to the streptozotocin (STZ)-induced diabetic rats and analyzed its antidiabetic effects. We found that the extract of En with a dose of 500 mg/kg/body weight exhibited significant effect to reduce blood glucose in STZ-induced rats as compared with the control group ( P < .001). Our histological data also showed that the extract significantly improved the histopathology of pancreas. Collectively, both in vitro and in vivo studies revealed that En possesses α-glucosidase inhibitory, antioxidant, and anti-hyperglycemic effect in STZ-induced diabetic rats.


1992 ◽  
Vol 107 (4) ◽  
pp. 501-510 ◽  
Author(s):  
Andrew T. Lyos ◽  
William E. Winter ◽  
Charles M. Henley

Ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, is important in development and regeneration. We hypothesize that aminoglycoside inhibition of ODC mediates developmental hypersensitivity to aminoglycoside ototoxicity. Kanamycin effects on ODC activity (decarboxylation of ornithine) in vitro were determined in the postmitochondriai fraction of cochlear and renal homogenates from 11-day-old rats. Kanamycin inhibited cochlear and renal ODC by an uncompetitive mechanism. For the cochlear enzyme, the inhibitor constant (Ki) for kanamycin was 99 ± 25 (μmol/L; for the renal enzyme, the Ki = 1.5 ± 0.1 mmol/L. In vivo effects of kanamycin on cochlear, renal, brain ODC activity were determined in rats treated with kanamycin (400 mg/kg/day, intramuscularly) or saline during postnatal days 11 through 20, the hypersensitive period for ototoxicity. Rats were killed on postnatal days 12,14,16, and 20 and ODC was assayed. Kanamycin significantly inhibited ODC in the lateral wall-organ of Corti and kidney (ANOVA α = 0.05), but had no effect on cochlear nerve and no consistent inhibitory effect in the brain. These results suggest that ODC is a potential target of kanamycin in susceptible tissues and may be a contributing factor in developmental sensitivity to the drug by inhibiting repair and developmental processes mediated by ODC.


Nanomedicine ◽  
2019 ◽  
Vol 14 (17) ◽  
pp. 2339-2353 ◽  
Author(s):  
Wenli Qiu ◽  
Huifeng Zhang ◽  
Xiao Chen ◽  
Lina Song ◽  
Wenjing Cui ◽  
...  

Aim: Biomarker-targeted nanocarrier holds promise for early diagnosis and effective therapy of cancer. Materials & methods: This work successfully designs and evaluates GPC1-targeted, gemcitabine (GEM)-loaded multifunctional gold nanocarrier for near-infrared fluorescence (NIRF)/MRI and targeted chemotherapy against pancreatic cancer in vitro and in vivo. Results: Blood biochemical and histological analyses show that the in vivo toxicity of GPC1-GEM-nanoparticles (NPs) was negligible. Both in vitro and in vivo studies demonstrate that GPC1-GEM-NPs can be used as NIRF/MR contrast agent for pancreatic cancer detection. Treatment of xenografted mice with GPC1-GEM-NPs shows a higher tumor inhibitory effect compared with controls. Conclusion: This novel theranostic nanoplatform provides early diagnostic and effective therapeutic potential for pancreatic cancer.


2019 ◽  
Author(s):  
H. Benalia ◽  
R. Mahfoudi ◽  
A. Djeridane ◽  
M. Yousfi

Natural products, such as plant extracts, open a new horizon for the discovery of new antiurolithiatic agents. In Algeria Pituranthos scoparius commonly known as “guezzah”, one of the most important plants medicinal Saharan is used for the treatment and prevention of urinary lithiasis. The present study deals with the in vitro evaluation of the inhibitory effect on the formation of calcium oxalate kidney stones of isolated fractions from Pituranthos scoparius roots hydromethanolic extract. First, the study led to the isolation of four fractions (F1 = 107 mg, F2 = 19 mg, F3 = 7 mg, F4 = 18 mg) by combining two chromatographic techniques: open column chromatography and preparative thin layer chromatography (TLC). The in vitro antiurolithiatic activity of different isolated fractions has been carried out by two different models. In the turbidimetric assay, we have determined spectrophotometrically the effect of the isolated fractions (1g/l) on the oxalocalcic crystallization, induced by the addition of oxalate in urines from four subjects, whereas the gravimetric assay is used to measure the variation of uric acid and calcium urate renal calculi weight, after putting them in contact with 3 ml of the isolated fractions (1 g/l) during 30 days. In the two assays, the antiurolithiatic activity was compared with that of six antiurolithogenesis inhibitory standards: sodium citrate, succinimide pharbiol, foncitril, alcaphor, allopurinol, and phosphoneuros. The achieved results measured by the two tests show clearly that the fraction 1 (F1) has provided very important antiurolithiatic power (> 50% of inhibition) compared to the standard inhibitors. The in vitro obtained experimental results in this study show that the Pituranthos scoparius roots are a biologically active natural source for the treatment of oxalocalcic lithiasis. Therefore, further experiments will be required to identify the molecules involved in the antiurolithiatic effect and to study their in vivo effects, which can be used therapeutically.


Sign in / Sign up

Export Citation Format

Share Document