Competing Endogenous RNAs in Hepatocellular Carcinoma—The Pinnacle of Rivalry

2019 ◽  
Vol 39 (04) ◽  
pp. 463-475 ◽  
Author(s):  
Abdelrahman Yousry Afify ◽  
Salma Abdulmaqsoud Ibrahim ◽  
Mennah Hisham Aldamsisi ◽  
Mai Saad Zaghloul ◽  
Nada El-Ekiaby ◽  
...  

AbstractThe role of noncoding transcripts in gene expression is nowadays acknowledged to keep various diseases at bay—despite being referred to as “junk” DNA several years ago. Believed to be at the heart of multiple regulatory pathways, microRNAs (miRNAs) are small noncoding RNAs (ncRNAs) involved in posttranscriptional gene regulation. Recently, the discovery of ncRNAs that compete for shared miRNA pools has dimmed the light on the solo performance of miRNAs in genomic regulation. Indeed, several studies describe RNAs such as long noncoding RNAs, mRNAs, circular RNAs, pseudogenes, and viral RNAs as competing endogenous RNAs (ceRNAs) that sequester miRNAs, allowing for de-repression of downstream miRNA targets. Such integration between coding and noncoding transcripts forms complex ceRNA networks that when dysregulated lead to several diseases such as hepatocellular carcinoma. Here, the authors review perturbed ceRNA networks in hepatocellular carcinoma, describe the role of each in tumorigenesis, and discuss their various clinical implications.

2021 ◽  
Vol 22 (11) ◽  
pp. 5711
Author(s):  
Julian Zacharjasz ◽  
Anna M. Mleczko ◽  
Paweł Bąkowski ◽  
Tomasz Piontek ◽  
Kamilla Bąkowska-Żywicka

Knee osteoarthritis (OA) is a degenerative knee joint disease that results from the breakdown of joint cartilage and underlying bone, affecting about 3.3% of the world's population. As OA is a multifactorial disease, the underlying pathological process is closely associated with genetic changes in articular cartilage and bone. Many studies have focused on the role of small noncoding RNAs in OA and identified numbers of microRNAs that play important roles in regulating bone and cartilage homeostasis. The connection between other types of small noncoding RNAs, especially tRNA-derived fragments and knee osteoarthritis is still elusive. The observation that there is limited information about small RNAs different than miRNAs in knee OA was very surprising to us, especially given the fact that tRNA fragments are known to participate in a plethora of human diseases and a portion of them are even more abundant than miRNAs. Inspired by these findings, in this review we have summarized the possible involvement of microRNAs and tRNA-derived fragments in the pathology of knee osteoarthritis.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 486
Author(s):  
Sílvia C. Rodrigues ◽  
Renato M. S. Cardoso ◽  
Filipe V. Duarte

The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment.


2022 ◽  
Vol 23 (2) ◽  
pp. 930
Author(s):  
Ba Da Yun ◽  
Ye Ji Choi ◽  
Seung Wan Son ◽  
Gabriel Adelman Cipolla ◽  
Fernanda Costa Brandão Berti ◽  
...  

Circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) are differentially expressed in gastrointestinal cancers. These noncoding RNAs (ncRNAs) regulate a variety of cellular activities by physically interacting with microRNAs and proteins and altering their activity. It has also been suggested that exosomes encapsulate circRNAs and lncRNAs in cancer cells. Exosomes are then discharged into the extracellular environment, where they are taken up by other cells. As a result, exosomal ncRNA cargo is critical for cell–cell communication within the cancer microenvironment. Exosomal ncRNAs can regulate a range of events, such as angiogenesis, metastasis, immune evasion, drug resistance, and epithelial-to-mesenchymal transition. To set the groundwork for developing novel therapeutic strategies against gastrointestinal malignancies, a thorough understanding of circRNAs and lncRNAs is required. In this review, we discuss the function and intrinsic features of oncogenic circRNAs and lncRNAs that are enriched within exosomes.


2021 ◽  
pp. mbc.E21-05-0225
Author(s):  
Katheryn E. Lett ◽  
Madelyn K. Logan ◽  
Douglas M. McLaurin ◽  
Michael D. Hebert

MicroRNAs (miRNAs) are ∼22 nt small noncoding RNAs that control gene expression at the posttranscriptional level through translational inhibition and destabilization of their target mRNAs. The biogenesis of miRNAs involves a series of processing steps beginning with cropping of the primary miRNA transcript by the Microprocessor complex, which is comprised of Drosha and DGCR8. Here we report a novel regulatory interaction between the Microprocessor components and coilin, the Cajal Body (CB) marker protein. Coilin knockdown causes alterations in the level of primary and mature miRNAs, let-7a and miR-34a, and their miRNA targets, HMGA2 and Notch1, respectively. We also found that coilin knockdown affects the levels of DGCR8 and Drosha in cells with (HeLa) and without (WI-38) CBs. To further explore the role of coilin in miRNA biogenesis, we conducted a series of co-immunoprecipitation experiments using coilin and DGCR8 constructs, which revealed that coilin and DGCR8 can form a complex. Additionally, our results indicate that phosphorylation of DGCR8, which has been shown to increase protein stability, is impacted by coilin knockdown. Collectively, our results implicate coilin as a member of the regulatory network governing miRNA biogenesis.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ling Wei ◽  
Xingwu Wang ◽  
Liyan Lv ◽  
Jibing Liu ◽  
Huaixin Xing ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the second most lethal human cancer. A portion of patients with advanced HCC can significantly benefit from treatments with sorafenib, adriamycin, 5-fluorouracil and platinum drugs. However, most HCC patients eventually develop drug resistance, resulting in a poor prognosis. The mechanisms involved in HCC drug resistance are complex and inconclusive. Human transcripts without protein-coding potential are known as noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), long noncoding RNAs (lncRNAs) and circular RNA (circRNA). Accumulated evidences demonstrate that several deregulated miRNAs and lncRNAs are important regulators in the development of HCC drug resistance which elucidates their potential clinical implications. In this review, we summarized the detailed mechanisms by which miRNAs and lncRNAs affect HCC drug resistance. Multiple tumor-specific miRNAs and lncRNAs may serve as novel therapeutic targets and prognostic biomarkers for HCC.


Epigenomics ◽  
2020 ◽  
Vol 12 (19) ◽  
pp. 1751-1763
Author(s):  
Sachin Kumar ◽  
Monu Pandey ◽  
Surender K Sharawat

We aim to discuss comprehensively the role of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in small-cell lung cancer (SCLC) biology and their clinical utility as cancer biomarkers. We searched the scientific literature to select articles related to the role of lncRNAs and circRNAs in SCLC biology or as cancer biomarkers. We identified that a number of lncRNAs and circRNAs can regulate key biological processes involved in SCLC development, including cell proliferation, metastasis and chemoresistance mainly acting as miRNA sponges. Also, the expression of a few lncRNAs and circRNAs predicted survival outcome depicting their utility as prognostic biomarkers. Further investigations on the role of lncRNAs and circRNAs in SCLC tumors may yield novel therapeutic targets for SCLC.


2020 ◽  
Vol 29 ◽  
pp. 096368972096394 ◽  
Author(s):  
Guangming Liu ◽  
Wei Guo ◽  
Min Rao ◽  
Junjie Qin ◽  
Feng Hu ◽  
...  

Circular RNAs (circRNAs) could sponge micro-RNAs (miRNAs) to regulate tumor progression of hepatocellular carcinoma (HCC). Hsa_circ_104566 contributes to papillary thyroid carcinoma progression. However, the tumorigenic mechanism of hsa_circ_104566 on HCC remains enigmatic. The role of hsa_circ_104566 on HCC was therefore evaluated in this study. First, the high expression of hsa_circ_104566 was found in HCC tissues, which was significantly associated with poor prognosis in HCC patients. Second, Hsa_circ_104566 promoted HCC progression by decreasing apoptosis and E-cadherin, while increasing cell viability, proliferation, migration, invasion, and N-cadherin. On the other hand, HCC progression was suppressed by knockdown of hsa_circ_104566. Hsa_circ_104566 could target miR-338-3p, and its expression was negatively correlated with miR-338-3p in HCC patients. Moreover, miR-338-3p suppressed protein expression of Forkhead box protein 1 (FOXP1) and had a negative correlation with FOXP1 in HCC patients. Functional assay further indicated that the promotion of HCC progression by hsa_circ_104566 was reversed by miR-338-3p, and miR-338-3p inhibitor could counteract the effect of hsa_circ_104566 knockdown on the suppression of HCC progression. In vivo assay indicated that hsa_circ_104566 knockdown suppressed HCC tumor growth and metastasis. In conclusion, hsa_circ_104566 sponged miR-338-3p to promote HCC progression, providing a potential therapeutic target for cancer intervention.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Noraini Abd-Aziz ◽  
Nur Izyani Kamaruzman ◽  
Chit Laa Poh

MicroRNAs (miRNAs) are small noncoding RNAs that function at the posttranscriptional level in the cellular regulation process. miRNA expression exerts vital effects on cell growth such as cell proliferation and survival. In cancers, miRNAs have been shown to initiate carcinogenesis, where overexpression of oncogenic miRNAs (oncomiRs) or reduced expression of tumor suppressor miRNAs has been reported. In this review, we discuss the involvement of miRNAs in tumorigenesis, the role of synthetic miRNAs as either mimics or antagomirs to overcome cancer growth, miRNA delivery, and approaches to enhance their therapeutic potentials.


Endocrinology ◽  
2020 ◽  
Vol 161 (8) ◽  
Author(s):  
Liang Yin ◽  
Chong Zeng ◽  
Jie Yao ◽  
Jie Shen

Abstract Autoimmune thyroid disease (AITD) is one of the most frequent autoimmune disorders. However, the pathogenesis of AITD has not been fully elucidated. Recently, accumulating evidence has demonstrated that abnormal expression of noncoding RNAs (ncRNAs) is closely related to the etiopathogenesis of AITD. microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) are 3 major groups of ncRNAs that are attracting increasing attention. Herein, we summarized our present knowledge on the role of miRNAs, lncRNAs, and circRNAs in AITD. This review focused on the importance of ncRNAs in development of the most prevalent AITD, such as Hashimoto disease and Graves’ diseases. Altogether, the main purpose of this review is to provide new insights in the pathogenesis of AITD and the possibility of developing novel potential therapeutic targets.


2015 ◽  
Vol 308 (7) ◽  
pp. C521-C527 ◽  
Author(s):  
Michael B. Butterworth

The role of small noncoding RNAs, termed microRNAs (miRs), in development and disease has been recognized for many years. The number of miRs and regulated targets that reinforce a role for miRs in human disease and disease progression is ever-increasing. However, less is known about the involvement of miRs in steady-state, nondisease homeostatic pathways. In the kidney, much of the regulated ion transport is under the control of hormonal signaling. Evidence is emerging that miRs are involved in the hormonal regulation of kidney function and, particularly, in ion transport. In this short review, the production and intra- and extracellular signaling of miRs and the involvement of miRs in kidney disease are discussed. The discussion also focuses on the role of these small biological molecules in the homeostatic control of ion transport in the kidney. MiR regulation of and by corticosteroid hormones, in particular the mineralocorticoid hormone aldosterone, is considered. While information about the role of aldosterone-regulated miRs in the kidney is limited, an increase in the research in this area will undoubtedly highlight the involvement of miRs as central mediators of hormonal signaling in normal physiology.


Sign in / Sign up

Export Citation Format

Share Document