Ongoing Supplementation of Probiotics to Cesarean-Born Neonates during the First Month of Life may Impact the Gut Microbial

Author(s):  
Wenqing Yang ◽  
Liang Tian ◽  
Jiao Luo ◽  
Jialin Yu

Objective The delivery mode is considered to be a significant influencing factor in the early gut microbiota composition, which is associated with the long-term health of the host. In this study, we tried to explore the effects of probiotics on the intestinal microbiota of C-section neonates. Study Design Twenty-six Chinese neonates were enrolled in this study. The neonates were divided into four groups: VD (natural delivery neonates, n = 3), CD (cesarean-born neonates, n = 9), CDL (cesarean-born neonates supplemented with probiotic at a lower dosage, n = 7), and CDH (cesarean-born neonates supplemented with probiotic at a higher dosage, n = 7). Fecal samples were collected on the 3rd, 7th, and 28th day since birth. The V3–V4 region of the 16S ribosomal ribonucleic acid gene was sequenced by next-generation sequencing technology. Results The α-diversity of the intestinal microbiota of cesarean delivery neonates was significantly lower than that of the naturally delivered neonates on the 28th day (p = 0.005). After supplementation with probiotics for 28 days, the α-diversity and the β-diversity of the gut flora in the cesarean-born infants (CDL28 and CDH28) was similar to that in the vaginally delivery infants. Meanwhile, the abundances of Lactobacillus and Bifidobacterium were significantly increased since the 3rd day of probiotic supplementation. Besides, the sustained supplementation of probiotics to neonates would help improve the abundance of the operational taxonomic units in several different Clusters of Orthologous Groups of proteins. Conclusion This study showed that probiotics supplementation to cesarean-born neonates since birth might impact the diversity and function of gut microbiota. Key Points

2021 ◽  
Vol 12 (2) ◽  
pp. 567-573
Author(s):  
Kaiyu Pan ◽  
Lianfang Yu ◽  
Chengyue Zhang ◽  
Jianhua Zhan ◽  
Rongliang Tu

Gut microbiota can influence cell differentiation, metabolism, and immune function and is key for the normal development and future health of early infants. Several factors have been reported to be related to the microbiota composition of neonates, such as gestational age, delivery mode, feeding method, antibiotics consumption, and ethnicity, among others. So we investigated the relationship between gestational age and the composition and predicted function of the gut microbiota of neonates and early infants by sequencing the 16S rRNA gene present in stool samples obtained from 100 prospectively enrolled full-term and preterm newborns. In the 3-day-old neonates samples, the prominent genera in the full-term group were Escherichia-Shigella, Streptococcus, Bifidobacterium, and Bacteroides, while in the preterm group, Staphylococcus, Streptococcus, Escherichia-Shigella and Clostridium were the most abundant genera identified. There were statistical difference between two groups(P<0.05). Moreover, the predominant genera in the full-term group were Bifidobacterium, Lactobacillus, Bacteroides, and Clostridium , whereas the main genera in the preterm group were Escherichia-Shigella, Clostridium, Bifidobacterium and Bacteroides, in stool samples from 30-42-day-old infants. We found the α-diversity in 3-day-old group was significantly lower than in the 30-42-day-old group whether it’s full-term or preterm (P<0.001). Functional inference analysis revealed higher levels of biodegradation and metabolism of carbohydrates, vitamins in the full-term group than in the preterm group, both in neonates and early infants, which may contribute to the stability of the microbiota in the full-term group. There were significant differences in the composition and predicted function of the gut microbiota of early infants due to gestational age. The 16S sequencing technology was an effective and reliable tool in the detection of gut microbiota in early infants.


Author(s):  
Ting-Yun Lin ◽  
Szu-Chun Hung

Abstract Background Protein-energy wasting (PEW) is prevalent and associated with adverse outcomes in patients with chronic kidney disease (CKD). However, the pathogenesis of PEW in CKD patients has not been fully identified. The gut microbiota has been implicated in the regulation of host metabolism and energy balance. Therefore, we aimed to explore the association between nutritional status and the composition of the gut microbiota in hemodialysis patients. Methods Gut microbial diversity and taxonomy were examined in 88 hemodialysis patients with PEW (n = 22) and normal nutritional status (n = 66) who were matched 1:3 for age and sex. Nutritional status was assessed by using the 7-point subjective global assessment (SGA) score (1–3 = severe PEW; 4–5 = moderate PEW and 6–7 = normal nutrition). The gut microbiota was assessed by 16S ribosomal RNA gene sequencing. Results Patients with normal nutritional status had a significantly higher body mass index and physical activity and serum albumin levels, but significantly lower levels of inflammatory cytokines than patients with PEW. The most striking finding was that the α-diversity of the gut microbiota was significantly lower in patients with PEW. In a multivariate analysis, the SGA score was independently and positively associated with α-diversity (P = 0.049). Patients with or without PEW were different with respect to the principal coordinate analysis of β-diversity. Notably, the relative abundance of Faecalibacterium prausnitzii, a butyrate-producing bacteria, was markedly reduced in patients with PEW. Conclusion In hemodialysis patients, PEW assessed with the SGA was associated with gut dysbiosis.


2020 ◽  
Vol 21 (21) ◽  
pp. 7863
Author(s):  
Corentine Alauzet ◽  
Lisiane Cunat ◽  
Maxime Wack ◽  
Laurence Lanfumey ◽  
Christine Legrand-Frossi ◽  
...  

During deep-space travels, crewmembers face various physical and psychosocial stressors that could alter gut microbiota composition. Since it is well known that intestinal dysbiosis is involved in the onset or exacerbation of several disorders, the aim of this study was to evaluate changes in intestinal microbiota in a murine model used to mimic chronic psychosocial stressors encountered during a long-term space mission. We demonstrate that 3 weeks of exposure to this model (called CUMS for Chronic Unpredictable Mild Stress) induce significant change in intracaecal β-diversity characterized by an important increase of the Firmicutes/Bacteroidetes ratio. These alterations are associated with a decrease of Porphyromonadaceae, particularly of the genus Barnesiella, a major member of gut microbiota in mice and humans where it is described as having protective properties. These results raise the question of the impact of stress-induced decrease of beneficial taxa, support recent data deduced from in-flight experimentations and other ground-based models, and emphasize the critical need for further studies exploring the impact of spaceflight on intestinal microbiota in order to propose strategies to countermeasure spaceflight-associated dysbiosis and its consequences on health.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1257 ◽  
Author(s):  
Simon J. Reider ◽  
Simon Moosmang ◽  
Judith Tragust ◽  
Lovro Trgovec-Greif ◽  
Simon Tragust ◽  
...  

(1) Background: Alterations in the structural composition of the human gut microbiota have been identified in various disease entities along with exciting mechanistic clues by reductionist gnotobiotic modeling. Improving health by beneficially modulating an altered microbiota is a promising treatment approach. Prebiotics, substrates selectively used by host microorganisms conferring a health benefit, are broadly used for dietary and clinical interventions. Herein, we sought to investigate the microbiota-modelling effects of the soluble fiber, partially hydrolyzed guar gum (PHGG). (2) Methods: We performed a 9 week clinical trial in 20 healthy volunteers that included three weeks of a lead-in period, followed by three weeks of an intervention phase, wherein study subjects received 5 g PHGG up to three times per day, and concluding with a three-week washout period. A stool diary was kept on a daily basis, and clinical data along with serum/plasma and stool samples were collected on a weekly basis. PHGG-induced alterations of the gut microbiota were studied by 16S metagenomics of the V1–V3 and V3–V4 regions. To gain functional insight, we further studied stool metabolites using nuclear magnetic resonance (NMR) spectroscopy. (3) Results: In healthy subjects, PHGG had significant effects on stool frequency and consistency. These effects were paralleled by changes in α- (species evenness) and β-diversity (Bray–Curtis distances), along with increasing abundances of metabolites including butyrate, acetate and various amino acids. On a taxonomic level, PHGG intake was associated with a bloom in Ruminococcus, Fusicatenibacter, Faecalibacterium and Bacteroides and a reduction in Roseburia, Lachnospiracea and Blautia. The majority of effects disappeared after stopping the prebiotic and most effects tended to be more pronounced in male participants. (4) Conclusions: Herein, we describe novel aspects of the prebiotic PHGG on compositional and functional properties of the healthy human microbiota.


2020 ◽  
Vol 287 (1931) ◽  
pp. 20200824 ◽  
Author(s):  
Inga Leena Angell ◽  
Knut Rudi

Despite the fact that infant gut colonization patterns have been extensively studied, we have limited knowledge about the underlying ecological processes. This particularly relates to the ecological choice of nutrient utilization strategies. The aim of the current study was therefore to compare empirically determined nutrient utilization strategies with that expected from a combinatorial game theory model. Observational analyses for 100 mother–child pairs suggested mother–child transmission of specialists with the potential to use few nutrients. Generalists, on the other hand, with the potential to use many nutrients, peaked at three months of age for the children. The level of generalists was gradually replaced with specialists up to 12 months of age. Game theory simulation revealed a competitive advantage of generalists in an expanding population, while more specialized bacteria were favoured with the maturation of the population. This suggests that the observed increase in generalists in the three-month-old children could be due to an immature, expanding gut microbiota population while the increase of specialists at 12 months could be due to population maturation. The simulated and empirical data also correspond with respect to an increased α diversity and a decreased β diversity with the number of simulations and age, respectively. Taken together, game theory simulation of nutrient utilization strategies can therefore provide novel insight into the maturation of the human gut microbiota during infancy.


Author(s):  
Karla A Bascuñán ◽  
Magdalena Araya ◽  
Leda Roncoroni ◽  
Luisa Doneda ◽  
Luca Elli

ABSTRACT The gut microbiota plays a relevant role in determining an individual's health status, and the diet is a major factor in modulating the composition and function of gut microbiota. Gluten constitutes an essential dietary component in Western societies and is the environmental trigger of celiac disease. The presence/absence of gluten in the diet can change the diversity and proportions of the microbial communities constituting the gut microbiota. There is an intimate relation between gluten metabolism and celiac disease pathophysiology and gut microbiota; their interrelation defines intestinal health and homeostasis. Environmental factors modify the intestinal microbiota and, in turn, its changes modulate the mucosal and immune responses. Current evidence from studies of young and adult patients with celiac disease increasingly supports that dysbiosis (i.e., compositional and functional alterations of the gut microbiome) is present in celiac disease, but to what extent this is a cause or consequence of the disease and whether the different intestinal diseases (celiac disease, ulcerative colitis, Crohn disease) have specific change patterns is not yet clear. The use of bacterial-origin enzymes that help completion of gluten digestion is of interest because of the potential application as coadjuvant in the current treatment of celiac disease. In this narrative review, we address the current knowledge on the complex interaction between gluten digestion and metabolism, celiac disease, and the intestinal microbiota.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Kymberleigh A. Romano ◽  
Eugenio I. Vivas ◽  
Daniel Amador-Noguez ◽  
Federico E. Rey

ABSTRACT Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which upon absorption by the host is converted in the liver to trimethylamine-N-oxide (TMAO). Recent studies revealed that TMAO exacerbates atherosclerosis in mice and positively correlates with the severity of this disease in humans. However, which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., genotype) and diet affect TMA production and colonization of these microbes, and the effects TMA-producing microbes have on the bioavailability of dietary choline remain largely unknown. We screened a collection of 79 sequenced human intestinal isolates encompassing the major phyla found in the human gut and identified nine strains capable of producing TMA from choline in vitro. Gnotobiotic mouse studies showed that TMAO accumulates in the serum of animals colonized with TMA-producing species, but not in the serum of animals colonized with intestinal isolates that do not generate TMA from choline in vitro. Remarkably, low levels of colonization by TMA-producing bacteria significantly reduced choline levels available to the host. This effect was more pronounced as the abundance of TMA-producing bacteria increased. Our findings provide a framework for designing strategies aimed at changing the representation or activity of TMA-producing bacteria in the human gut and suggest that the TMA-producing status of the gut microbiota should be considered when making recommendations about choline intake requirements for humans. IMPORTANCE Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and increased trimethylamine N-oxide (TMAO) levels have been causally linked with CVD development. This work identifies members of the human gut microbiota responsible for both the accumulation of trimethylamine (TMA), the precursor of the proatherogenic compound TMAO, and subsequent decreased choline bioavailability to the host. Understanding how to manipulate the representation and function of choline-consuming, TMA-producing species in the intestinal microbiota could potentially lead to novel means for preventing or treating atherosclerosis and choline deficiency-associated diseases.


2021 ◽  
Vol 64 (9) ◽  
pp. 588-595
Author(s):  
Chang Soo Eun

Background: The prevalence of inflammatory bowel diseases (IBD) has been rapidly increasing over the past several decades in Korea. IBD appears to be resulted from inappropriate and chronic activation of the mucosal immune system driven by stimuli such as intestinal microbiota and various environmental factors in genetically susceptible individuals.Current Concepts: Recent advances in next-generation sequencing technology have identified alterations in the composition and function of the intestinal microbiota in individuals with IBD. Dysbiosis in patients with IBD is characterized by decreased bacterial diversity combined with an expansion of putative aggressive species and a reduction in protective species. Altered microbial composition and function in IBD correlates with increased immune stimulation, epithelial dysfunction, or enhanced mucosal permeability. Thus, dysbiosis may play an essential role in the pathogenesis of IBD.Discussion and Conclusion: Although it is currently unclear whether dysbiosis is a cause or consequence of intestinal inflammation in IBD, several microbial-based and microbial-targeted therapies have yielded promising early results.


2020 ◽  
Author(s):  
Corentine Alauzet ◽  
Lisiane Cunat ◽  
Maxime Wack ◽  
Laurence Lanfumey ◽  
Christine Legrand-Frossi ◽  
...  

Abstract Background: During deep-space travels, crewmembers face various physical and psychosocial stressors that could alter gut microbiota composition. Since it is well known that intestinal dysbiosis is involved in the onset or exacerbation of several disorders, the aim of this study was to evaluate changes in intestinal microbiota in a ground-based murine model mimicking psychosocial stressors encountered during a long-term space mission.Results: We demonstrate that 3 weeks of exposure to Chronic Unpredictable Mild Stress (CUMS) induce significant change in intracaecal β-diversity characterized by an important increase of the Firmicutes/Bacteroidetes ratio. These stress-induced alterations are associated with a decrease of Porphyromonadaceae, particularly of the genus Barnesiella that is a major member of gut microbiota in mice, but also in human, where it is described as having protective properties.Conclusions: These results raise the question of the impact of stress-induced decrease of beneficial taxa, support recent data obtained with in-flight experimentations or gravity change models, and emphasize the critical need for further studies exploring the impact of spaceflight on intestinal microbiota in order to propose strategies to countermeasure spaceflight-associated dysbiosis and its consequences on health.


2021 ◽  
Author(s):  
Ezequiel Santillan ◽  
Stefan Wuertz

Diversity is frequently linked to the functional stability of ecological communities. However, its association with assembly mechanisms remains largely unknown, particularly under fluctuating disturbances. Here, we subjected complex bacterial communities in bioreactor microcosms to different frequencies of organic loading shocks, tracking temporal dynamics in their assembly, structure and function. Null modelling revealed a stronger role of stochasticity at intermediate disturbance frequencies, preceding the formation of a peak in α-diversity. Communities at extreme ends of the disturbance range had the lowest α-diversity and highest within-treatment similarity in terms of β-diversity, with stronger deterministic assembly. Stochasticity prevailed during the initial successional stages, coinciding with better specialized function (nitrogen removal). In contrast, general functions (carbon removal and microbial aggregate settleability) benefited from stronger deterministic processes. We showed that changes in assembly processes predictably precede changes in diversity under a gradient of disturbance frequencies, advancing our understanding of the mechanisms behind disturbance-diversity-function relationships.


Sign in / Sign up

Export Citation Format

Share Document