Nanocrystals acting as Coulomb islands operating at room temperature created using a focused ion-beam process

2001 ◽  
Vol 79 (1) ◽  
pp. 120-122 ◽  
Author(s):  
T. W. Kim ◽  
D. C. Choo ◽  
J. H. Shim ◽  
M. Jung ◽  
S. O. Kang ◽  
...  
2002 ◽  
Vol 733 ◽  
Author(s):  
Brock McCabe ◽  
Steven Nutt ◽  
Brent Viers ◽  
Tim Haddad

AbstractPolyhedral Oligomeric Silsequioxane molecules have been incorporated into a commercial polyurethane formulation to produce nanocomposite polyurethane foam. This tiny POSS silica molecule has been used successfully to enhance the performance of polymer systems using co-polymerization and blend strategies. In our investigation, we chose a high-temperature MDI Polyurethane resin foam currently used in military development projects. For the nanofiller, or “blend”, Cp7T7(OH)3 POSS was chosen. Structural characterization was accomplished by TEM and SEM to determine POSS dispersion and cell morphology, respectively. Thermal behavior was investigated by TGA. Two methods of TEM sample preparation were employed, Focused Ion Beam and Ultramicrotomy (room temperature).


2014 ◽  
Vol 922 ◽  
pp. 264-269 ◽  
Author(s):  
Masahiro Inomoto ◽  
Norihiko L. Okamoto ◽  
Haruyuki Inui

The deformation behavior of the Γ (gamma) phase in the Fe-Zn system has been investigated via room-temperature compression tests of single-crystal micropillar specimens fabricated by the focused ion beam method. Trace analysis of slip lines indicates that {110} slip occurs for the specimens investigated in the present study. Although the slip direction has not been uniquely determined, the slip direction might be <111> in consideration of the crystal structure of the Γ phase (bcc).


2020 ◽  
Vol 27 ◽  
pp. 1-5
Author(s):  
David Vokoun ◽  
Jan Maňák ◽  
Karel Tesař ◽  
Stanislav Habr

The thermomechanical processing by equal-channel angular pressing (ECAP) is used for certain metals and alloys in order to make their structure fine and to increase material strength. In the previous study done at our institute, grade 2 titanium was successfully processed using four consecutive route A passes via a 90 ° ECAP die with high backpressure at room temperature. Orientation dependence of compressive and tensile loading of ECAPed titanium samples was demonstrated at macro-scale. However, scarce attention has been paid so far to the mechanical behavior of ECAPed titanium samples at micro-scale. In the present study, compression experiments on titanium micropillars, fabricated using focused ion beam, are carried out for two main directions in respect to preceding ECAP pressing (insert and extrusion directions). The purpose of this study is to discuss the orientation dependence of mechanical response during compression of the as-ECAPed titanium micro-pillars.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1906 ◽  
Author(s):  
Alba Salvador-Porroche ◽  
Soraya Sangiao ◽  
Patrick Philipp ◽  
Pilar Cea ◽  
José María De Teresa

The Focused Ion Beam Induced Deposition (FIBID) under cryogenic conditions (Cryo-FIBID) technique is based on obtaining a condensed layer of precursor molecules by cooling the substrate below the condensation temperature of the gaseous precursor material. This condensed layer is irradiated with ions according to a desired pattern and, subsequently, the substrate is heated above the precursor condensation temperature, revealing the deposits with the shape of the exposed pattern. In this contribution, the fast growth of Pt-C deposits by Cryo-FIBID is demonstrated. Here, we optimize various parameters of the process in order to obtain deposits with the lowest-possible electrical resistivity. Optimized ~30 nm-thick Pt-C deposits are obtained using ion irradiation area dose of 120 μC/cm2 at 30 kV. This finding represents a substantial increment in the growth rate when it is compared with deposits of the same thickness fabricated by standard FIBID at room temperature (40 times enhancement). The value of the electrical resistivity in optimized deposits (~4 × 104 µΩ cm) is suitable to perform electrical contacts to certain materials. As a proof of concept of the potential applications of this technology, a 100 µm × 100 µm pattern is carried out in only 43 s of ion exposure (area dose of 23 μC/cm2), to be compared with 2.5 h if grown by standard FIBID at room temperature. The ion trajectories and the deposit composition have been simulated using a binary-collision-approximation Monte Carlo code, providing a solid basis for the understanding of the experimental results.


2020 ◽  
Vol 27 (2) ◽  
pp. 472-476
Author(s):  
Mirko Holler ◽  
Johannes Ihli ◽  
Esther H. R. Tsai ◽  
Fabio Nudelman ◽  
Mariana Verezhak ◽  
...  

A simple two-spindle based lathe system for the preparation of cylindrical samples intended for X-ray tomography is presented. The setup can operate at room temperature as well as under cryogenic conditions, allowing the preparation of samples down to 20 and 50 µm in diameter, respectively, within minutes. Case studies are presented involving the preparation of a brittle biomineral brachiopod shell and cryogenically fixed soft brain tissue, and their examination by means of ptychographic X-ray computed tomography reveals the preparation method to be mainly free from causing artefacts. Since this lathe system easily yields near-cylindrical samples ideal for tomography, a usage for a wide variety of otherwise challenging specimens is anticipated, in addition to potential use as a time- and cost-saving tool prior to focused ion-beam milling. Fast sample preparation becomes especially important in relation to shorter measurement times expected in next-generation synchrotron sources.


Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 799 ◽  
Author(s):  
José De Teresa ◽  
Pablo Orús ◽  
Rosa Córdoba ◽  
Patrick Philipp

In this contribution, we compare the performance of Focused Electron Beam-induced Deposition (FEBID) and Focused Ion Beam-induced Deposition (FIBID) at room temperature and under cryogenic conditions (the prefix “Cryo” is used here for cryogenic). Under cryogenic conditions, the precursor material condensates on the substrate, forming a layer that is several nm thick. Its subsequent exposure to a focused electron or ion beam and posterior heating to 50 °C reveals the deposit. Due to the extremely low charge dose required, Cryo-FEBID and Cryo-FIBID are found to excel in terms of growth rate, which is typically a few hundred/thousand times higher than room-temperature deposition. Cryo-FIBID using the W(CO)6 precursor has demonstrated the growth of metallic deposits, with resistivity not far from the corresponding deposits grown at room temperature. This paves the way for its application in circuit edit and the fast and direct growth of micro/nano-electrical contacts with decreased ion damage. The last part of the contribution is dedicated to the comparison of these techniques with other charge-based lithography techniques in terms of the charge dose required and process complexity. The comparison indicates that Cryo-FIBID is very competitive and shows great potential for future lithography developments.


2012 ◽  
Vol 1516 ◽  
pp. 157-162 ◽  
Author(s):  
Masahiro Inomoto ◽  
Norihiko L. Okamoto ◽  
Haruyuki Inui

ABSTRACTThe deformation behaviour of the ζ (zeta) phase in the Fe-Zn system has been investigated via room-temperature compression tests of single-crystal micropillar specimens prepared by the focused ion beam method. Trace analysis of slip lines indicates that {110} slip occurs for the specimens investigated in the present study. Although the slip direction has not been uniquely determined, comparison of Schmid factors and yield stress values suggests that the slip direction might be <1$\overline 1 $2>, which is inconsistent with the easiest slip system {110}[001] predicted on the basis of the primitive Peierls-Nabarro model.


2002 ◽  
Vol 738 ◽  
Author(s):  
R. Yongsunthon ◽  
A. Stanishevsky ◽  
P. J. Rous ◽  
E. D. Williams

ABSTRACTWe demonstrate Magnetic Force Microscopy (MFM) imaging, at room temperature in air, of a 0.25mA DC current path in a 140nm-wide gold nanowire. The nanowire was created by focused ion beam milling of a 12μm wide Cr/Au line of 20nm/110nm Cr/Au thickness. Iterative fitting of the MFM data to an idealized model of the structure yielded a nanowire resistivity a factor of 3.5 higher than that of a control Cr/Au region which was unaffected by the ion beam processing. MFM imaging of an ion-implant patterned line shows current deflection around the implant region.


Sign in / Sign up

Export Citation Format

Share Document