Effects of surface nitridation during nitrogen plasma ignition on optical quality of GaInAsN grown by solid source molecular beam epitaxy

2003 ◽  
Vol 94 (4) ◽  
pp. 2662-2666 ◽  
Author(s):  
S. Z. Wang ◽  
S. F. Yoon ◽  
W. K. Loke
Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 215
Author(s):  
Rajeev R. Kosireddy ◽  
Stephen T. Schaefer ◽  
Marko S. Milosavljevic ◽  
Shane R. Johnson

Three InAsSbBi samples are grown by molecular beam epitaxy at 400 °C on GaSb substrates with three different offcuts: (100) on-axis, (100) offcut 1° toward [011], and (100) offcut 4° toward [011]. The samples are investigated using X-ray diffraction, Nomarski optical microscopy, atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The InAsSbBi layers are 210 nm thick, coherently strained, and show no observable defects. The substrate offcut is not observed to influence the structural and interface quality of the samples. Each sample exhibits small lateral variations in the Bi mole fraction, with the largest variation observed in the on-axis growth. Bismuth rich surface droplet features are observed on all samples. The surface droplets are isotropic on the on-axis sample and elongated along the [011¯] step edges on the 1° and 4° offcut samples. No significant change in optical quality with offcut angle is observed.


1995 ◽  
Vol 379 ◽  
Author(s):  
Ron Kaspi ◽  
Keith R. Evans ◽  
Don C. Reynolds ◽  
Jeff Brown ◽  
Marek Skowronski

ABSTRACTAntimony was used as a surfactant during solid-source molecular beam epitaxy of AIGaAs layers. A steady-state surface-segregated population of Sb was maintained at the AIGaAs growth surface by providing a continuous Sb2 flux to compensate for loss due to thermal desorption. Above ∼ 650 °C, the incorporation rate of Sb was negligible, thereby allowing the deposition of AlGaAs layers despite the presence of Sb at the surface. A significant improvement in the optical quality of Al0.24Ga0 76As layers was observed by photoluminescence. In addition, extended reflection high energy electron diffraction oscillations and a reduction in Al0.24Ga0.76As surface roughness was observed when Sb was employed as a surfactant.


2014 ◽  
Vol 7 (11) ◽  
pp. 115502 ◽  
Author(s):  
Dever P. Norman ◽  
Samir M. Hamad ◽  
Li-Wei Tu ◽  
Yuan-Ting Lin ◽  
Chen-Yu Lin ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6270
Author(s):  
Tristan Smołka ◽  
Katarzyna Posmyk ◽  
Maja Wasiluk ◽  
Paweł Wyborski ◽  
Michał Gawełczyk ◽  
...  

We present an experimental study on the optical quality of InAs/InP quantum dots (QDs). Investigated structures have application relevance due to emission in the 3rd telecommunication window. The nanostructures are grown by ripening-assisted molecular beam epitaxy. This leads to their unique properties, i.e., low spatial density and in-plane shape symmetry. These are advantageous for non-classical light generation for quantum technologies applications. As a measure of the internal quantum efficiency, the discrepancy between calculated and experimentally determined photon extraction efficiency is used. The investigated nanostructures exhibit close to ideal emission efficiency proving their high structural quality. The thermal stability of emission is investigated by means of microphotoluminescence. This allows to determine the maximal operation temperature of the device and reveal the main emission quenching channels. Emission quenching is predominantly caused by the transition of holes and electrons to higher QD’s levels. Additionally, these carriers could further leave the confinement potential via the dense ladder of QD states. Single QD emission is observed up to temperatures of about 100 K, comparable to the best results obtained for epitaxial QDs in this spectral range. The fundamental limit for the emission rate is the excitation radiative lifetime, which spreads from below 0.5 to almost 1.9 ns (GHz operation) without any clear spectral dispersion. Furthermore, carrier dynamics is also determined using time-correlated single-photon counting.


2004 ◽  
Vol 270 (1-2) ◽  
pp. 62-68 ◽  
Author(s):  
J. Miguel-Sánchez ◽  
M. Hopkinson ◽  
M. Gutiérrez ◽  
P. Navaretti ◽  
H.Y. Liu ◽  
...  

1991 ◽  
Vol 241 ◽  
Author(s):  
Y. Hwang ◽  
D. Zhang ◽  
T. Zhang ◽  
M. Mytych ◽  
R. M. Kolbas

ABSTRACTIn this work we demonstrate that photopumped quantum wellheterostructure lasers with excellent optical quality can be grown ontop of a LT GaAs buffer layer by molecular beam epitaxy. Hightemperature thermal annealing of these lasers blue-shifts the laseremission wavelengths but the presence/absence of a LT GaAs layerhad little effect on the overall laser thresholds. Also, to first order itwas not necessary to include an AlAs barrier layer to preventadverse effects (as has been necessary in the gate stack of MESFETs to prevent carrier compensation).


Sign in / Sign up

Export Citation Format

Share Document