A comparison of ferromagnetic resonance with magnetic moment and x‐ray film thickness measurements for thin Permalloy films

1972 ◽  
Vol 43 (8) ◽  
pp. 3538-3542 ◽  
Author(s):  
C.H. Bajorek ◽  
C.H. Wilts
1974 ◽  
Vol 96 (3) ◽  
pp. 472-479 ◽  
Author(s):  
S. H. Loewenthal ◽  
R. J. Parker ◽  
E. V. Zaretsky

An empirical elastohydrodynamic (EHD) film thickness formula for predicting the minimum film thickness occurring within heavily loaded contacts (maximum Hertz stresses above 1.04 × 109 N/m2 (150,000 psi)) was developed. The formula was based upon X-ray film thickness measurements made with synthetic paraffinic, fluorocarbon, Type II ester and polyphenyl ether fluids covering a wide range of test conditions. Comparisons were made between predictions from an isothermal EHD theory and the test data. The deduced relationship was found to adequately reflect the high-load dependence exhibited by the measured data. The effects of contact geometry, material and lubricant properties on the form of the empirical model are also discussed.


1972 ◽  
Vol 94 (1) ◽  
pp. 35-43 ◽  
Author(s):  
H. S. Cheng

The isothermal, elastohydrodynamic (EHD) solutions in the inlet region of line contacts are extended to cover the full range of pressure-viscosity parameter, G, and the region of extremely heavy loads. The effect of a composite exponential model for the pressure-viscosity dependence on the film thickness is also studied. Results of the film thickness are compared with those based on work by Grubin, Dowson-Higginson, Bell and Kannel, and Herrebrugh. Comparison is also made between the theoretical results with the recently obtained X-ray film thickness measurements.


1971 ◽  
Vol 93 (4) ◽  
pp. 478-484 ◽  
Author(s):  
J. W. Kannel ◽  
J. C. Bell

The thickness of the film formed by each of five lubricants between a pair of disks in rolling contact has been measured by an X-ray technique for a range of loads (80,000 to 225,000 psi maximum Hertz stress), two temperatures (178 F and 250 F), and three speeds (4300 fpm to 9100 fpm). An empirical formula fitted to the X-ray data shows a much higher sensitivity of film thickness to load than is normally predicted. In order to judge whether the measurements themselves are at fault, the X-ray measuring process has been reexamined for accuracy, especially where load-dependent errors might arise. Some weaknesses are noted, such as in the amount of X-ray absorption, but these should not affect load sensitivity greatly. New experiments designed to find effects of imperfect collimation of X-rays indicate that reflection of X-rays may be significant, but these effects too do not seem to account for the anomalies of the film thickness measurements.


Author(s):  
C. W. Price ◽  
E. F. Lindsey

Thickness measurements of thin films are performed by both energy-dispersive x-ray spectroscopy (EDS) and x-ray fluorescence (XRF). XRF can measure thicker films than EDS, and XRF measurements also have somewhat greater precision than EDS measurements. However, small components with curved or irregular shapes that are used for various applications in the the Inertial Confinement Fusion program at LLNL present geometrical problems that are not conducive to XRF analyses but may have only a minimal effect on EDS analyses. This work describes the development of an EDS technique to measure the thickness of electroless nickel deposits on gold substrates. Although elaborate correction techniques have been developed for thin-film measurements by x-ray analysis, the thickness of electroless nickel films can be dependent on the plating bath used. Therefore, standard calibration curves were established by correlating EDS data with thickness measurements that were obtained by contact profilometry.


1984 ◽  
Vol 45 (C2) ◽  
pp. C2-33-C2-36 ◽  
Author(s):  
D. A. Sewell ◽  
I. D. Hall ◽  
G. Love ◽  
J. P. Partridge ◽  
V. D. Scott

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 510
Author(s):  
Yongqiang Pan ◽  
Huan Liu ◽  
Zhuoman Wang ◽  
Jinmei Jia ◽  
Jijie Zhao

SiO2 thin films are deposited by radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) technique using SiH4 and N2O as precursor gases. The stoichiometry of SiO2 thin films is determined by the X-ray photoelectron spectroscopy (XPS), and the optical constant n and k are obtained by using variable angle spectroscopic ellipsometer (VASE) in the spectral range 380–1600 nm. The refractive index and extinction coefficient of the deposited SiO2 thin films at 500 nm are 1.464 and 0.0069, respectively. The deposition rate of SiO2 thin films is controlled by changing the reaction pressure. The effects of deposition rate, film thickness, and microstructure size on the conformality of SiO2 thin films are studied. The conformality of SiO2 thin films increases from 0.68 to 0.91, with the increase of deposition rate of the SiO2 thin film from 20.84 to 41.92 nm/min. The conformality of SiO2 thin films decreases with the increase of film thickness, and the higher the step height, the smaller the conformality of SiO2 thin films.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 599
Author(s):  
Handan Huang ◽  
Li Jiang ◽  
Yiyun Yao ◽  
Zhong Zhang ◽  
Zhanshan Wang ◽  
...  

The laterally graded multilayer collimator is a vital part of a high-precision diffractometer. It is applied as condensing reflectors to convert divergent X-rays from laboratory X-ray sources into a parallel beam. The thickness of the multilayer film varies with the angle of incidence to guarantee every position on the mirror satisfies the Bragg reflection. In principle, the accuracy of the parameters of the sputtering conditions is essential for achieving a reliable result. In this paper, we proposed a precise method for the fabrication of the laterally graded multilayer based on a planetary motion magnetron sputtering system for film thickness control. This method uses the fast and slow particle model to obtain the particle transport process, and then combines it with the planetary motion magnetron sputtering system to establish the film thickness distribution model. Moreover, the parameters of the sputtering conditions in the model are derived from experimental inversion to improve accuracy. The revolution and rotation of the substrate holder during the final deposition process are achieved by the speed curve calculated according to the model. Measurement results from the X-ray reflection test (XRR) show that the thickness error of the laterally graded multilayer film, coated on a parabolic cylinder Si substrate, is less than 1%, demonstrating the effectiveness of the optimized method for obtaining accurate film thickness distribution.


2013 ◽  
Vol 68 (9) ◽  
pp. 971-978 ◽  
Author(s):  
Inga Schellenberg ◽  
Ute Ch. Rodewald ◽  
Christian Schwickert ◽  
Matthias Eul ◽  
Rainer Pöttgen

The ternary antimonides RE4T7Sb6 (RE=Gd-Lu; T =Ru, Rh) have been synthesized from the elements by arc-melting and subsequent annealing in an induction furnace. The samples have been characterized by powder X-ray diffraction. Four structures were refined on the basis of single-crystal X-ray diffractometer data: U4Re7Si6 type, space group Im3m with a=862.9(2) pm, wR2=0.0296, 163 F2 values for Er4Ru7Sb6; a=864.1(1) pm, wR2=0.1423, 153 F2 values for Yb4Ru7Sb6; a=872.0(2) pm, wR2=0.0427, 172 F2 values for Tb4Rh7Sb6; and a=868.0(2) pm, wR2=0.0529, 154 F2 values for Er4Rh7Sb6, with 10 variables per refinement. The structures have T1@Sb6 octahedra and slightly distorted RE@T26Sb6 cuboctahedra as building units. The distorted cuboctahedra are condensed via all trapezoidal faces, and this network leaves octahedral voids for the T1 atoms. The ruthenium-based series of compounds was studied by temperature-dependent magnetic susceptibility measurements. Lu4Ru7Sb6 is Pauli-paramagnetic. The antimonides RE4Ru7Sb6 with RE=Dy, Ho, Er, and Tm show Curie-Weiss paramagnetism. Antiferromagnetic ordering occurs at 10.0(5), 5.1(5) and 4.0(5) K for Dy4Ru7Sb6, Ho4Ru7Sb6 and Er4Ru7Sb6, respectively, while Tm4Ru7Sb6 remains paramagnetic. Yb4Ru7Sb6 is an intermediate-valent compound with a reduced magnetic moment of 3.71(1) μB per Yb as compared to 4.54 μB for a free Yb3+ ion


Sign in / Sign up

Export Citation Format

Share Document