Second‐Order Sum Rule for the Vibrations of Isotopic Molecules and the Second Rule of the Mean

1958 ◽  
Vol 28 (4) ◽  
pp. 694-699 ◽  
Author(s):  
Jacob Bigeleisen
Keyword(s):  
Sum Rule ◽  
1982 ◽  
Vol 60 (3) ◽  
pp. 321-328 ◽  
Author(s):  
D. Duplain ◽  
B. Goulard

The total rate of muon capture by 16O is calculated using the linked cluster expansion to introduce ground state correlations. All diagrams up to the second order in the number of hole-lines are included. [Formula: see text] is reduced by some 15% and is shown to behave like σ−1,. [Formula: see text] and [Formula: see text] are strongly increased by about 30%. This enhancement is related to that part of the defect wave function which arises directly from the tensor component of the N–N potential. It is suggested that, for those transitions that are induced by spin operators, the mean neutrino energy may be smaller than usually thought.


2011 ◽  
Vol 18 (01) ◽  
pp. 71-85
Author(s):  
Fabrizio Cacciafesta

We provide a simple way to visualize the variance and the mean absolute error of a random variable with finite mean. Some application to options theory and to second order stochastic dominance is given: we show, among other, that the "call-put parity" may be seen as a Taylor formula.


Author(s):  
Joa˜o Pessoa ◽  
Nuno Fonseca ◽  
C. Guedes Soares

The paper presents an investigation of the slowly varying second order drift forces on a floating body of simple geometry. The body is axis-symmetric about the vertical axis, like a vertical cylinder with a rounded bottom and a ratio of diameter to draft of 3.25. The hydrodynamic problem is solved with a second order boundary element method. The second order problem is due to interactions between pairs of incident harmonic waves with different frequencies, therefore the calculations are carried out for several difference frequencies with the mean frequency covering the whole frequency range of interest. Results include the surge drift force and pitch drift moment. The results are presented in several stages in order to assess the influence of different phenomena contributing to the global second order responses. Firstly the body is restrained and secondly it is free to move at the wave frequency. The second order results include the contribution associated with quadratic products of first order quantities, the total second order force, and the contribution associated to the free surface forcing.


Author(s):  
Sahin Yigit ◽  
Nilanjan Chakraborty

PurposeThis paper aims to numerically analyse natural convection of yield stress fluids in rectangular cross-sectional cylindrical annular enclosures. The laminar steady-state simulations have been conducted for a range of different values of normalised internal radius (ri/L1/8 to 16, whereLis the difference between outer and inner radii); aspect ratio (AR=H/Lfrom 1/8 to 8 whereHis the enclosure height); and nominal Rayleigh number (Rafrom 103to 106) for a single representative value of Prandtl number (Pris 500).Design/methodology/approachThe Bingham model has been used to mimic the yield stress fluid motion, and numerical simulations have been conducted for both constant wall temperature (CWT) and constant wall heat flux (CWHF) boundary conditions for the vertical side walls. The conservation equations of mass, momentum and energy have been solved in a coupled manner using the finite volume method where a second-order central differencing scheme is used for the diffusive terms and a second-order up-wind scheme is used for the convective terms. The well-known semi-implicit method for pressure-linked equations algorithm is used for the coupling of the pressure and velocity.FindingsIt is found that the mean Nusselt number based on the inner peripheryNu¯iincreases (decreases) with an increase inRa(Bn) due to augmented buoyancy (viscous) forces irrespective of the boundary condition. The ratio of convective to diffusive thermal transport increases with increasingri/Lfor both Newtonian (i.e.Bn= 0) and Bingham fluids regardless of the boundary condition. Moreover, the mean Nusselt numberNu¯inormalised by the corresponding Nusselt number due to pure conductive transport (i.e.Nu¯i/(Nu¯i)cond) shows a non-monotonic trend with increasingARin the CWT configuration for a given set of values ofRa,Pr,Lifor both Newtonian (i.e.Bn= 0) and Bingham fluids, whereasNu¯i/(Nu¯i)condincreases monotonically with increasingARin the CWHF configuration. The influences of convective thermal transport strengthen while thermal diffusive transport weakens with increasingAR, and these competing effects are responsible for the non-monotonicNu¯i/(Nu¯i)condvariation withARin the CWT configuration.Originality/valueDetailed scaling analysis is utilised to explain the observed influences ofRa,BN,ri/LandAR, which along with the simulation data has been used to propose correlations forNu¯i.


1976 ◽  
Vol 17 (77) ◽  
pp. 447-462 ◽  
Author(s):  
L. W. Morland

The treatments by Nye and Kamb of glacier sliding over a wavy bed with small slope, which assume the ice to be approximated by a Newtonian fluid of high viscosity, are complemented by the inclusion of the glacier depth and the inclination of the bed to the horizontal. The driving force of the motion, gravity, is therefore present in the flow equations and defines immediately the mean drag on the bed. A geothermal heal flux is also included in order to estimate its possible effect on the flow. A complex variable method is used to determine the velocity and temperature fields to second order in the bed slope. These fields satisfy the zero shear traction and pressure-melting-regelation conditions to the same order on the actual bed profile. It is the balance of the second-order term which determines explicitly the (zero order) basal-sliding velocity and surface velocity in terms of the geometry and physical properties of both ice and bed. An explicit solution is illustrated for a sinusoidal bed. and a simple criterion for the onset of cavitation is obtained.


1970 ◽  
Vol 37 (3) ◽  
pp. 612-616 ◽  
Author(s):  
L. L. Bucciarelli ◽  
C. Kuo

The mean-square response of a lightly damped, second-order system to a type of non-stationary random excitation is determined. The forcing function on the system is taken in the form of a product of a well-defined, slowly varying envelope function and a noise function. The latter is assumed to be white or correlated as a narrow band process. Taking advantage of the slow variation of the envelope function and the small damping of the system, relatively simple integrals are obtained which approximate the mean-square response. Upper bounds on the mean-square response are also obtained.


Author(s):  
Pierre Cardaliaguet ◽  
François Delarue ◽  
Jean-Michel Lasry ◽  
Pierre-Louis Lions

This chapter investigates the second-order master equation with common noise, which requires the well-posedness of the mean field game (MFG) system. It also defines and analyzes the solution of the master equation. The chapter explains the forward component of the MFG system that is recognized as the characteristics of the master equation. The regularity of the solution of the master equation is explored through the tangent process that solves the linearized MFG system. It also analyzes first-order differentiability and second-order differentiability in the direction of the measure on the same model as for the first-order derivatives. This chapter concludes with further description of the derivation of the master equation and well-posedness of the stochastic MFG system.


1985 ◽  
Vol 29 (04) ◽  
pp. 270-284 ◽  
Author(s):  
Arvid Naess

A theoretical method is presented for estimating the response statistics of a marine structure that can be modeled as a second-order dynamic system subjected to a stationary, Gaussian sea. The method is particularly suitable for predicting extreme responses. The problem formulation expresses the response in terms of a second-order Volterra series, that is, including a linear and a quadratic term. For this response process the mean upcrossing frequency is found and asymptotic expressions are established that can be used to obtain closed-form solutions to the extreme-value problem.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 487 ◽  
Author(s):  
Mario Versaci ◽  
Giovanni Angiulli ◽  
Alessandra Jannelli

In this paper, a stable numerical approach for recovering the membrane profile of a 2D Micro-Electric-Mechanical-Systems (MEMS) is presented. Starting from a well-known 2D nonlinear second-order differential model for electrostatic circular membrane MEMS, where the amplitude of the electrostatic field is considered proportional to the mean curvature of the membrane, a collocation procedure, based on the three-stage Lobatto formula, is derived. The convergence is studied, thus obtaining the parameters operative ranges determining the areas of applicability of the device under analysis.


Sign in / Sign up

Export Citation Format

Share Document