Aluminum-induced crystallization of amorphous silicon–germanium thin films

2004 ◽  
Vol 85 (11) ◽  
pp. 2134-2136 ◽  
Author(s):  
M. Gjukic ◽  
M. Buschbeck ◽  
R. Lechner ◽  
M. Stutzmann
2011 ◽  
Vol 317-319 ◽  
pp. 341-344
Author(s):  
Long Gu ◽  
Hui Dong Yang ◽  
Bo Huang

Amorphous Silicon-germanium films were prepared by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on glass substrates. The structural characteristics, deposition rate, photosensitivity, and optical band gap of the silicon-germanium thin films were investigated with plasma power varying from 15W to 45W. The deposition rate increased within a certain range of plasma power. With the plasma power increasing, the photosensitivity of the thin films decreased. It is evident that varying the plasma power changes the deposition rate, photosensitivity, which was fundamentally crucial for the fabrication of a-Si/a-SiGe/a-SiGe stacked solar cells. For our deposition system, the most optimization value was 30-35W.


2004 ◽  
Vol 808 ◽  
Author(s):  
Sampath K. Paduru ◽  
Husam H. Abu-safe ◽  
Hameed A. Naseem ◽  
Adnan Al-Shariah ◽  
William D. Brown

ABSTRACTCW Argon-ion laser initiated aluminum induced crystallization (AIC) of RF magnetron sputtered amorphous silicon (a-Si) thin films has been investigated. It was found that lasers could be effectively used to initiate AIC process at very low threshold power densities. An argon-ion laser (λ=514.5 nm) was used to anneal Al/a-Si/glass structures with varying power densities ranging between 55 and 125 W/cm2 and exposure times ranging from 10 to 120 s. X-ray diffraction analysis showed the resulting films to be polycrystalline. The crystallization rate increased both with power density and exposure time. Environmental scanning electron microscopy (ESEM) analysis showed that the surface features change with increasing power density and irradiation time. A dendritic growth pattern was observed in the initial stages of interaction between the films. A strong crystalline Raman peak at around 520 cm-1 was observed in the Raman spectra of the crystallized samples.


2011 ◽  
Vol 11 (1) ◽  
pp. S50-S53 ◽  
Author(s):  
Chao-Chun Wang ◽  
Chueh-Yang Liu ◽  
Shui-Yang Lien ◽  
Ko-Wei Weng ◽  
Jung-Jie Huang ◽  
...  

2012 ◽  
Vol 569 ◽  
pp. 27-30
Author(s):  
Bao Jun Yan ◽  
Lei Zhao ◽  
Ben Ding Zhao ◽  
Jing Wei Chen ◽  
Hong Wei Diao ◽  
...  

Hydrogenated amorphous silicon germanium thin films (a-SiGe:H) were prepared via plasma enhanced chemical vapor deposition (PECVD). By adjusting the flow rate of GeH4, a-SiGe:H thin films with narrow bandgap (Eg) were fabricated with high Ge incorporation. It was found that although narrow Eg was obtained, high Ge incorporation resulted in a great reduction of the thin film photosensitivity. This degradation was attributed to the increase of polysilane-(SiH2)n, which indicated a loose and disordered microstructure, in the films by systematically investigating the optical, optoelectronic and microstructure properties of the prepared a-SiGe:H thin films via transmission, photo/dark conductivity, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR) measurements. Such investigation provided a helpful guide for further preparing narrow Eg a-SiGe:H materials with good optoelectronic properties.


2007 ◽  
Vol 989 ◽  
Author(s):  
Kendrick S Hsu ◽  
Jeremy Ou-Yang ◽  
Li P. Ren ◽  
Grant Z. Pan

AbstractThe effect of power density and thickness on aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) formed with plasma enhanced chemical vapor deposition (PECVD) was studied by using N2-protected conventional furnace reaction and optical microscopy. With the deposition power density ranging from 0.05 to 1.00 W/cm2 and the thickness from 500 to 5000Å, it was found that a low power density as well as a large a-Si thickness could result in a decrease of activation energy and therefore a significant reduction of the AIC reaction temperature. Scanning and transmission electron microscopy and X-ray diffraction were used to check the crystallinity and quality of the AIC thin films. High quality polysilicon thin films were achieved at an AIC reaction temperature as low as 120°C.


Sign in / Sign up

Export Citation Format

Share Document