Design and structural analysis of brake disc by varying brake pressure

2020 ◽  
Author(s):  
Shaik Himam Saheb
Author(s):  
Mateus Feitosa Camboim ◽  
Ludmila Martins de Araújo ◽  
Nathalya Rebeca Melo da Cunha ◽  
Rodolfo Vieira Sarmento

2016 ◽  
Vol 16 (4) ◽  
pp. 196-200 ◽  
Author(s):  
A.W. Orłowicz ◽  
M. Mróz ◽  
G. Wnuk ◽  
O. Markowska ◽  
W. Homik ◽  
...  

Abstract The paper concerns evaluation of the coefficient of friction characterising a friction couple comprising a commercial brake disc cast of flake graphite grey iron and a typical brake pad for passenger motor car. For the applied interaction conditions, the brake pressure of 0.53 MPa and the linear velocity measured on the pad-disc trace axis equalling 15 km/h, evolution of the friction coefficient μ values were observed. It turned out that after a period of 50 minutes, temperature reached the value 270°C and got stabilised. After this time interval, the friction coefficient value also got stabilised on the level of μ = 0.38. In case of a block in its original state, stabilisation of the friction coefficient value occurred after a stage in the course of which a continuous growth of its value was observed up to the level μ = 0.41 and then a decrease to the value μ = 0.38. It can be assumed that occurrence of this stage was an effect of an initial running-in of the friction couple. In consecutive abrasion tests on the same friction couple, the friction coefficient value stabilisation occurred after the stage of a steady increase of its value. It can be stated that the stage corresponded to a secondary running-in of the friction couple. The observed stages lasted for similar periods of time and ended with reaching the stabile level of temperature of the disc-pad contact surface.


Author(s):  
Julia Sophie Lotte ◽  
Daan Sem Luuk ◽  
Sven Noah Max ◽  
Alexander Simon Nick

The brake disc having a factor of safety (FOS) within the range of 2 to 3 is sustainable. The disc with a FOS less than 2 or greater than 3 undergoes distortion and are less sustainable. Theoretically it has been proven using graphs and calculations that a slight variation in the pedal ratio leads to a large variation in the clamping forces and stopping distance. As per the comparisons made from the FOS and as per result from Ansys, when the pedal force is 1200N and the pedal ratios are 7.2and 4.5, the FOS are 2.1 and 2.8 respectively. Hence the disc is sustainable. When the pedal force is 1500N, and the pedal ratio is 4.5, the FOS is 2.2. Hence in this case too, the disc is sustainable. Therefore by maintaining proper pedal ratios, the length of the pedal can be made compact and with effective braking effects. This phenomenon is useful in case of racing vehicles as it reduces the effort of driver. The proper pedal design work also determines the size of master cylinder to be adopted for the vehicle.


Author(s):  
Piyush Bhamare

Abstract: In recent time due to high performance of electronic component the heat generation is increasing drastically. Due to this scenario heat dissipation becomes a major issue in efficiency promation and stable operation. Silicon based microchannel heat sink fabricated using semiconductor production technique plays important role in cooling devices. The effect of the thermophysical properties of working fluids on the performance of microchannel is tested or we can say investigated. For this purpose the different working fluids are selected. water, hepthane, ammonia, methanol, and ethanol. The disc brake is a device for slowing or stopping the rotation of a wheel. Repetitive braking of the vehicle leads to heat generation during each braking event. Transient Thermal and Structural Analysis of the Rotor Disc of Disk Brake is aimed at evaluating the performance of disc brake rotor of a car under severe braking conditions and there by assist in disc rotor design and analysis. Disc brake model and analysis is done using ANSYS workbench 14.5. The main purpose of this study is to analysis the thermo mechanical behavior of the dry contact of the brake disc during the braking phase. The coupled thermal-structural analysis is used to determine the deformation and the Von Mises stress established in the disc for the both solid and ventilated disc with two different materials to enhance performance of the rotor disc. A comparison between analytical and results obtained from FEM is done and all the values obtained from the analysis are less than their allowable values. Hence best suitable design, material and rotor disc is suggested based on the performance, strength and rigidity criteria. Keywords- disc break, thermal analysis, structure analysis.


Author(s):  
W. H. Wu ◽  
R. M. Glaeser

Spirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits. A morphological model of the structure of the protein has been proposed at a resolution of about 25 Å, in which the morphological unit might be described as having the appearance of a flared-out, hollow cylinder with six ÅspokesÅ at the flared end. In order to understand the detailed association of the macromolecules, it is necessary to do a high resolution structural analysis. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl2, a procedure derived from that of Buckmire and Murray. Low dose, low temperature electron microscopy has been applied to the large arrays.As a first step, the samples were negatively stained with neutralized phosphotungstic acid, and the specimens were imaged at 40,000 magnification by use of a high resolution cold stage on a JE0L 100B. Low dose images were recorded with exposures of 7-9 electrons/Å2. The micrographs obtained (Fig. 1) were examined by use of optical diffraction (Fig. 2) to tell what areas were especially well ordered.


Author(s):  
E. Loren Buhle ◽  
Pamela Rew ◽  
Ueli Aebi

While DNA-dependent RNA polymerase represents one of the key enzymes involved in transcription and ultimately in gene expression in procaryotic and eucaryotic cells, little progress has been made towards elucidation of its 3-D structure at the molecular level over the past few years. This is mainly because to date no 3-D crystals suitable for X-ray diffraction analysis have been obtained with this rather large (MW ~500 kd) multi-subunit (α2ββ'ζ). As an alternative, we have been trying to form ordered arrays of RNA polymerase from E. coli suitable for structural analysis in the electron microscope combined with image processing. Here we report about helical polymers induced from holoenzyme (α2ββ'ζ) at low ionic strength with 5-7 mM MnCl2 (see Fig. 1a). The presence of the ζ-subunit (MW 86 kd) is required to form these polymers, since the core enzyme (α2ββ') does fail to assemble into such structures under these conditions.


Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


Sign in / Sign up

Export Citation Format

Share Document