scholarly journals Optimization Parameters of Disc Brake

Author(s):  
Piyush Bhamare

Abstract: In recent time due to high performance of electronic component the heat generation is increasing drastically. Due to this scenario heat dissipation becomes a major issue in efficiency promation and stable operation. Silicon based microchannel heat sink fabricated using semiconductor production technique plays important role in cooling devices. The effect of the thermophysical properties of working fluids on the performance of microchannel is tested or we can say investigated. For this purpose the different working fluids are selected. water, hepthane, ammonia, methanol, and ethanol. The disc brake is a device for slowing or stopping the rotation of a wheel. Repetitive braking of the vehicle leads to heat generation during each braking event. Transient Thermal and Structural Analysis of the Rotor Disc of Disk Brake is aimed at evaluating the performance of disc brake rotor of a car under severe braking conditions and there by assist in disc rotor design and analysis. Disc brake model and analysis is done using ANSYS workbench 14.5. The main purpose of this study is to analysis the thermo mechanical behavior of the dry contact of the brake disc during the braking phase. The coupled thermal-structural analysis is used to determine the deformation and the Von Mises stress established in the disc for the both solid and ventilated disc with two different materials to enhance performance of the rotor disc. A comparison between analytical and results obtained from FEM is done and all the values obtained from the analysis are less than their allowable values. Hence best suitable design, material and rotor disc is suggested based on the performance, strength and rigidity criteria. Keywords- disc break, thermal analysis, structure analysis.

2014 ◽  
Vol 699 ◽  
pp. 354-359
Author(s):  
Taufik Roni Sahroni ◽  
Sze Yeau Yong ◽  
W. Sapto Widodo ◽  
Abu Bakar Baharudin ◽  
Sivaraos ◽  
...  

This paper presents fatigue life analysis of high performance motorcycle disc brake. The design parameter such as stress, deformation and safety factory that influences the disk brake on a high performance motorcycle were investigated. The simulation of static structural analysis of high performance motorcycle is successfully presented on 3 proposed materials by using ANSYS software. The static structural analysis is performed on the disc brake rotor with these candidate materials. From the analysis, Martensitic stainless steel, Wrought AISI 410 has the lowest value in Von-Mises stress which is 766.9MPa. Furthermore, it is less deformed which is 0.3429mm and has the factor of safety more than 1. Thus, this project proposes Martensitic Wrought AISI 410 stainless steel as the suitable material for disc brake rotor on HONDA GL1500 VALKYRIE motorcycle.


2014 ◽  
Vol 61 (1) ◽  
pp. 89-113 ◽  
Author(s):  
Ali Belhocine ◽  
Mostefa Bouchetara

Abstract The main purpose of this study is to analyze the thermomechanical behavior of the dry contact between the brake disc and pads during the braking phase. The simulation strategy is based on softawe ANSYS11. The modeling of transient temperature in the disc brake is actually used to identify the factor of geometric design of the disc to install the ventilation system in vehicles. The thermal-structural analysis is then used with coupling to determine the deformation established and the Von Mises stress in the disc, the contact pressure distribution in pads. The results are satisfactory compared to those of the specialized literature.


2014 ◽  
Vol 1082 ◽  
pp. 344-347
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Rajendaran Vairavan ◽  
Hussin Kamarudin ◽  
Mukhzeer Mohamad Shahimin ◽  
...  

High power LEDs are currently being plagued by heat dissipation challenges due to its high power density thus limiting its further potential development and fulfillment. Exercising proper selection of packaging component could improve the life time of high power LED. In this work, the significance of the heat slug geometry on the heat dissipation of high power LED was addressed through simulation analysis. The heat slug geometries were varied in order to compare the heat dissipation of the high power LED. Ansys version 11 was utilized for the simulation. The heat dissipation of the high power LED was evaluated in terms of junction temperature, von Mises stress and thermal resistance. The key results of the analysis showed that a superior surface area is preferred for an enhanced heat dissipation of high power LED


Author(s):  
Anil Babu Seelam ◽  
Nabil Ahmed Zakir Hussain ◽  
Sachidananda Hassan Krishanmurthy

Brakes are the most important component of any automobile. Brakes provide the ability to reduce or bring automobile to a complete stop. The process of braking is usually achieved by applying pressure to the brake discs. The main objective of this research paper is to propose an appropriate design and to perform analysis of a suitable brake rotor to enhance the performance of the high-speed car. The design of the brake disc is modelled using Solid works and the analysis is carried out using Ansys software. The analysis has been conducted by considering stainless steel and grey cast iron using same brake rotor design so that optimal choice of brake disc can be considered. The analysis considered involves static structural analysis and steady state thermal analysis considering specific parameters on brake rotor to increase the life of brake rotor. From the analysis it is found that the performance and life of disc brake depends upon heat dissipation. From the analysis results it can be concluded that grey cast iron has performed better as compared to stainless steel as this material has anti-fade properties which improves the life of the brake rotor.


Author(s):  
Nur Fazlin Che Halim ◽  
Nor Azwadi Che Sidik

The last decade has seen the rapid advancement of nanofluid in several ways. Nanofluid based on the refrigerant have been introduced as nanorefrigerant in recent years due to their significant effects on the efficiency of heat transfer. Previous studies showed some limitation in ways of dispersing nanoparticles into refrigerant. Hence, a new idea of adding nanoparticles into refrigerant has been presented. A mixing chamber has been designed to mix nanoparticles into high pressure refrigerant. The mixing chamber design is drawn with five different wall thickness which are 2 mm, 4 mm, 6 mm, 8 mm and 10 mm to investigate the sturdiest design that can withstand high pressure. Static structural analysis is performed to all designs with different wall thickness on SolidWorks Simulation. The maximum values of von Misses stress and displacement has been presented in this paper. Validation of the results are made by comparing the maximum values of von Mises stress with yield strength of the material. Mixing chamber with wall thickness of 10 mm showed the best results.


2019 ◽  
Vol 112 ◽  
pp. 03034 ◽  
Author(s):  
Mihai Gabriel Matache ◽  
Remus Marius Oprescu ◽  
Dragos Nicolae Dumitru ◽  
Gabriel Valentin Gheorghe ◽  
Dan Cujbescu ◽  
...  

Deep soil loosening machine MAS 65 is destined to work soil at depths exceeding 45 cm, thus the machine’s frame is subjected to loads which could affect its structural integrity. Within this paper a static structural analysis was performed on the machine’s 3D model using finite element method and strain and stress distribution maps were created. Using the Von Mises stress map there were identified several critical points which could fail during normal exploitation conditions and which should be monitored by strain gages during field tests in order to prevent structural failure.


Author(s):  
Ali Belhocine ◽  
◽  
Oday Ibraheem Abdullah ◽  

In this work, numerical simulations of the transient thermal and the static structural analysis were performed here sequentially, with the coupled thermo-structural method. Numerical procedure of calculation relies on important steps such that the CFD thermal analysis has been well illustrated in 3D, showing the effects of heat distribution over the brake disc. Three different brake disc materials were selected in this simulation and a comparative analysis of the results was conducted in order to derive the one with the best thermal behavior. Finally, the resolution of the coupled thermomechanical model allows us to visualize other important results of this research such as; the deformations, and the equivalent Von Mises stress of the disc, as well as the contact pressure of the brake pads. Following our analysis and the results we draw from it, we derive several conclusions. The choice allowed us to deliver the best suitable of the brake rotor to ensure and guarantee the good braking performance of vehicles.


2018 ◽  
Vol 12 (1) ◽  
pp. 108-114 ◽  
Author(s):  
K.N. Chethan ◽  
Shyamasunder N. Bhat ◽  
Mohammad Zuber ◽  
Satish B. Shenoy

Background:The femur bone is an essential part of human activity, providing stability and support in carrying out our day to day activities. The inter-human anatomical variation and load bearing ability of humans of different heights will provide the necessary understanding of their functional ability.Objective:In this study, femur bone of two humans of different lengths (tall femur and short femur) were subjected to static structural loading conditions to evaluate their load-bearing abilities using Finite Element Analysis.Methods:The 3D models of femur bones were developed using MIMICS from the CT scans which were then subjected to static structural analysis by varying the load from 1000N to 8000N. The von Mises stress and deformation were captured to compare the performance of each of the femur bones.Results:The tall femur resulted in reduced Von-Mises stress and total deformation when compared to the short femur. However, the maximum principle stresses showed an increase with an increase in the bone length. In both the femurs, the maximum stresses were observed in the medullary region.Conclusion:When the applied load exceeds 10 times the body weight of the person, the tall femur model exceeded 134 MPa stress value. The short femur model failed at 9 times the body weight, indicating that the tall femur had higher load-bearing abilities.


2018 ◽  
Vol 11 (3) ◽  
pp. 119-131
Author(s):  
M. Menyhártné Baracskai

In the article the thermal analysis of the brake disc and separator disc of a high performance power machine will be presented. As example an agricultural vehicle with weight of 30000 kg and maximum travel speed of 40 km/h will be taken. At stopping the vehicle, the braking system located in the wheel body becomes activated. The traversing of the piston forces the brake discs to friction. Therefore significant amount of heat is generated, which needs to be derived from the system. The article presents the construction of the disc brake system. Providing boundary condition, the radial temperature change of the cooled part of the brake disc will be defined.


2014 ◽  
Vol 487 ◽  
pp. 536-539 ◽  
Author(s):  
Rajendaran Vairavan ◽  
Zaliman Sauli ◽  
Vithyacharan Retnasamy ◽  
Nazuhusna Khalid ◽  
K. Anwar ◽  
...  

This paper presents the characterization of a single chip high power LED package through simulation. Ansys version 11 was used for the simulation. The characterization of the LED package with aluminum cylindrical heat slug was carried out under natural convection condition at ambient temperature of 25°C. The junction temperature and the stress of the LED chip was assesed. The LED chip was powered with input power of 0.1 W and 1 W and the heat dissipation was assesed. Results showed that that the junction temperature and the Von Mises Stress of the single chip LED package increases with the increased input power.


Sign in / Sign up

Export Citation Format

Share Document