scholarly journals Compensation effects on hole transport in C-doped p-type GaPN dilute nitrides

AIP Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 035207
Author(s):  
Yongjie Zou ◽  
Stephen M. Goodnick
1998 ◽  
Vol 195 (1-4) ◽  
pp. 117-123 ◽  
Author(s):  
P. Velling ◽  
G. Janßen ◽  
M. Agethen ◽  
W. Prost ◽  
F.J. Tegude
Keyword(s):  
X Ray ◽  

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2592 ◽  
Author(s):  
Funeka Matebese ◽  
Raymond Taziwa ◽  
Dorcas Mutukwa

P-type wide bandgap semiconductor materials such as CuI, NiO, Cu2O and CuSCN are currently undergoing intense research as viable alternative hole transport materials (HTMs) to the spiro-OMeTAD in perovskite solar cells (PSCs). Despite 23.3% efficiency of PSCs, there are still a number of issues in addition to the toxicology of Pb such as instability and high-cost of the current HTM that needs to be urgently addressed. To that end, copper thiocyanate (CuSCN) HTMs in addition to robustness have high stability, high hole mobility, and suitable energy levels as compared to spiro-OMeTAD HTM. CuSCN HTM layer use affordable materials, require short synthesis routes, require simple synthetic techniques such as spin-coating and doctor-blading, thus offer a viable way of developing cost-effective PSCs. HTMs play a vital role in PSCs as they can enhance the performance of a device by reducing charge recombination processes. In this review paper, we report on the current progress of CuSCN HTMs that have been reported to date in PSCs. CuSCN HTMs have shown enhanced stability when exposed to weather elements as the solar devices retained their initial efficiency by a greater percentage. The efficiency reported to date is greater than 20% and has a potential of increasing, as well as maintaining thermal stability.


2015 ◽  
Vol 1790 ◽  
pp. 13-18
Author(s):  
Shun Sasaki ◽  
Shailesh Madisetti ◽  
Vadim Tokranov ◽  
Michael Yakimov ◽  
Makoto Hirayama ◽  
...  

ABSTRACTGroup III-Sb compound semiconductors are promising materials for future CMOS circuits. Especially, In1-xGaxSb is considered as a complimentary p-type channel material to n-type In1-xGaxAs MOSFET due to the superior hole transport properties and similar chemical properties in III-Sb’s to those of InGaAs. The heteroepitaxial growth of In1-xGaxSb on Si substrate has significant advantage for volume fabrication of III-V ICs. However large lattice mismatch between InGaSb and Si results in many growth-related defects (micro twins, threading dislocations and antiphase domain boundaries); these defects also act as deep acceptor levels. Accordingly, unintentional doping in InGaSb films causes additional scattering, increase junction leakages and affects the interface properties. In this paper, we studied the correlations between of defects and hole carrier densities in GaSb and strained In1-xGaxSb quantum well layers by using various designs of metamorphic superlattice buffers.


2019 ◽  
Vol 12 (1) ◽  
pp. 230-237 ◽  
Author(s):  
E. Yalcin ◽  
M. Can ◽  
C. Rodriguez-Seco ◽  
E. Aktas ◽  
R. Pudi ◽  
...  

Herein, we studied the use of two different Self Assembled Monolayers (SAMs) made of semiconductor hole transport organic molecules to replace the most common p-type contact, PEDOT:PSS, in PiN methyl ammonium lead iodide perovskite solar cells (PSCs).


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 763
Author(s):  
Eugenia Bobeico ◽  
Lucia V. Mercaldo ◽  
Pasquale Morvillo ◽  
Iurie Usatii ◽  
Marco Della Noce ◽  
...  

Substoichiometric molybdenum oxide (MoOx) has good potential as a hole-collecting layer in solar cells. In this paper, we report on the application of ultrathin evaporated MoOx as a hole collector at the back side of two distinct photovoltaic technologies: polymeric and silicon heterojunction (SHJ). In the case of polymer solar cells, we test MoOx as a hole transport layer in devices with inverted architecture. The higher transparency of the MoOx film, compared to the commonly used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), allows an enhanced back reflected light into the photoactive layer, thus boosting the photogeneration, as found from the illuminated J-V and external quantum efficiency (EQE) curves. The higher fill factor (FF) of the MoOx-based device also suggests an improved charge collection efficiency compared to the cells with PEDOT:PSS. As for SHJ solar cells, we show that MoOx offers the means for dopant-free hole collection with both p-type and n-type Si wafers. In the present comparison over planar test structures with Ag back reflecting electrodes, we observe an efficiency gain of approximately 1% absolute against a baseline with a conventional p-type amorphous silicon hole collector. The gain is linked to the increased VOC, which is likely due to the reduced recombination at the Si wafer.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 473 ◽  
Author(s):  
Ming-Jiang Dai ◽  
Song-Sheng Lin ◽  
Qian Shi ◽  
Fen Liu ◽  
Wan-Xia Wang ◽  
...  

Cu2O thin film has been widely studied due to its intrinsic p-type conductivity. It can be used as p-type transparent conductive electrode or hole transport layer in various potential applications. However, its intrinsic p-type conductivity is very limited, which needs to be optimized by introducing acceptor defects. In this work, the electrical properties of the Cu2O films was improved through introducing interstitial oxygen in the films those were deposited via direct current sputtering assisted by oxygen ion beam. The results show that with oxygen ion beam current increase, the carrier concentration effectively improves. However, with more interstitial oxygen introduced, the film’s crystallinity significantly reduces, as well as the carrier mobility decreases. Meanwhile, all of the Cu2O films present moderate transmittance in the visible region (400–800 nm), but ideal transmittance in the near infrared (NIR) light region (800–2500 nm). When compared with the strong reflection of the n-type transparent conductive film to the near infrared light, the Cu2O film is transparent conductive in NIR region, which expands its application in the fabrication of NIR electrical devices.


2001 ◽  
Vol 89 (5) ◽  
pp. 2816-2825 ◽  
Author(s):  
A. K. Rice ◽  
K. J. Malloy
Keyword(s):  

2006 ◽  
Vol 89 (23) ◽  
pp. 232101 ◽  
Author(s):  
J. W. Sun ◽  
Y. M. Lu ◽  
Y. C. Liu ◽  
D. Z. Shen ◽  
Z. Z. Zhang ◽  
...  

Crystals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 539 ◽  
Author(s):  
Jeoungmin Ji ◽  
Farjana Haque ◽  
Nhu Thi To Hoang ◽  
Mallory Mativenga

We report clear room temperature ambipolar transport in ambient-air processed methylammonium lead iodide (MAPbI3) thin-film transistors (TFTs) with aluminum oxide gate-insulators and indium-zinc-oxide source/drain electrodes. The high ionicity of the MAPbI3 leads to p-type and n-type self-doping, and depending on the applied bias we show that simultaneous or selective transport of electrons and/or holes is possible in a single MAPbI3 TFT. The electron transport (n-type), however, is slightly more pronounced than the hole transport (p-type), and the respective channel resistances range from 5–11 and 44–55 MΩ/μm. Both p-type and n-type TFTs show good on-state characteristics for low driving voltages. It is also shown here that the on-state current of the n-type and p-type TFTs is highest in the slightly PbI2-rich and MAI-rich films, respectively, suggesting controllable n-type or p-type transport by varying precursor ratio.


Sign in / Sign up

Export Citation Format

Share Document