Colour Perception 1978–1997

Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 274-274
Author(s):  
J D Mollon

In the past twenty years, the spectral sensitivities of the three types of cone have been established with some certainty: direct measurements by microspectrophotometry and electrophysiology are in fair agreement with psychophysical estimates. Particularly significant was the publication of DNA sequences for the four opsins of the human eye, by Jeremy Nathans and colleagues in 1986. This work was soon to transform the understanding of retinitis pigmentosa and other retinal dystrophies, and it has given many insights into the evolution of colour vision; but, curiously, the explanations of dichromacy and anomalous trichromacy have not proved as straightforward as we all expected in 1986. What is clear, however, is that normal colour vision exhibits a genetic polymorphism: much of the intersubject variance in colour matches can be traced to differences in the amino-acid sequence of the opsins for the long-wave and middle-wave cone pigments. The last two decades have seen a major change in the status of opponent processes. In the 1970s it was still common for professors to tell undergraduates that the Young - Helmholtz theory of colour vision held at the receptor level and the Hering theory at the level of the retinal ganglion cells. It is now clear that the chromatically antagonistic processes revealed electrophysiologically and psychophysically in the early visual system do not correspond to the red - green and yellow - blue processes that Hering postulated on the basis of phenomenological observations. The existence of four unique hues is today one of the unexplained mysteries of colour science. In one salient respect, research in colour vision has been changed by instrumental advances. Computer-controlled monitors (though offering splendid pitfalls to the unwary) have allowed the study of spatially and temporally complex chromatic displays, notably in the field of colour constancy. Most recently there has been interest in the chromatic statistics of natural scenes: how well is the visual system matched to the statistics of the world and can it adapt to the gamut of chromaticities present in a given scene?

2020 ◽  
pp. jeb.233098
Author(s):  
Fanny de Busserolles ◽  
Fabio Cortesi ◽  
Lily Fogg ◽  
Sara M. Stieb ◽  
Martin Luehrmann ◽  
...  

The visual systems of teleost fishes usually match their habitats and lifestyles. Since coral reefs are bright and colourful environments, the visual systems of their diurnal inhabitants have been more extensively studied than those of nocturnal species. In order to fill this knowledge gap, we conducted a detailed investigation of the visual system of the nocturnal reef fish family Holocentridae. Results showed that the visual system of holocentrids is well adapted to their nocturnal lifestyle with a rod-dominated retina. Surprisingly, rods in all species were arranged into 6-17 well-defined banks, a feature most commonly found in deep-sea fishes, that may increase the light sensitivity of the eye and/or allow colour discrimination in dim-light. Holocentrids also have the potential for dichromatic colour vision during the day with the presence of at least two spectrally different cone types: single cones expressing the blue-sensitive SWS2A gene, and double cones expressing one or two green-sensitive RH2 genes. Some differences were observed between the two subfamilies, with Holocentrinae (squirrelfish) having a slightly more developed photopic visual system than Myripristinae (soldierfish). Moreover, retinal topography of both ganglion cells and cone photoreceptors showed specific patterns for each cell type, likely highlighting different visual demands at different times of the day, such as feeding. Overall, their well-developed scotopic visual systems and the ease of catching and maintaining holocentrids in aquaria, make them ideal models to investigate teleost dim-light vision and more particularly shed light on the function of the multibank retina and its potential for dim-light colour vision.


Genetics ◽  
1999 ◽  
Vol 153 (1) ◽  
pp. 351-360 ◽  
Author(s):  
Neil Davies ◽  
Francis X Villablanca ◽  
George K Roderick

Abstract The Mediterranean fruit fly, Ceratitis capitata, is a devastating agricultural pest that threatens to become established in vulnerable areas such as California and Florida. Considerable controversy surrounds the status of Californian medfly infestations: Do they represent repeated introductions or the persistence of a resident population? Attempts to resolve this question using traditional population genetic markers and statistical methods are problematic because the most likely source populations in Latin America were themselves only recently colonized and are genetically very similar. Here, significant population structure among several New World medfly populations is demonstrated through the analysis of DNA sequence variation at four intron loci. Surprisingly, in these newly founded populations, estimates of population structure increase when measures of subdivision take into account the relatedness of alleles as well as their frequency. A nonequilibrium, likelihood-based statistical test that utilizes multilocus genotypes suggests that the sole medfly captured in California during 1996 was introduced from Latin America and was less likely to be a remnant of an ancestral Californian population. Many bioinvasions are hierarchical in nature, consisting of several sequential or overlapping invasion events, the totality of which can be termed a metainvasion. Phylogenetic data from multilocus DNA sequences will be vital to understanding the evolutionary and ecological processes that underlie metainvasions and to resolving their constituent levels.


Development ◽  
1994 ◽  
Vol 120 (6) ◽  
pp. 1643-1649 ◽  
Author(s):  
K.H. Herzog ◽  
K. Bailey ◽  
Y.A. Barde

Using a sensitive and quantitative method, the mRNA levels of brain-derived neurotrophic factor (BDNF) were determined during the development of the chick visual system. Low copy numbers were detected, and BDNF was found to be expressed in the optic tectum already 2 days before the arrival of the first retinal ganglion cell axons, suggesting an early role of BDNF in tectal development. After the beginning of tectal innervation, BDNF mRNA levels markedly increased, and optic stalk transection at day 4 (which prevents subsequent tectal innervation) was found to reduce the contralateral tectal levels of BDNF mRNA. Comparable reductions were obtained after injection of tetrodotoxin into one eye, indicating that, already during the earliest stages of target encounter in the CNS, the degree of BDNF gene expression is influenced by activity-dependent mechanisms. BDNF mRNA was also detected in the retina itself and at levels comparable to those found in the tectum. Together with previous findings indicating that BDNF prevents the death of cultured chick retinal ganglion cells, these results support the idea that the tightly controlled expression of the BDNF gene might be important in the co-ordinated development of the visual system.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Anne Kristin Kvitle

<p><strong>Abstract.</strong> The ability of identifying objects and elements based on colour is important in order to decode the information in a map or other information graphics. For this reason, the colours need to appear correct and be perceived in the desired and intended way. Map reading is reported as a challenging task for people with impaired colour vision. In reviews of the challenges of colour vision deficiencies (CVD) in everyday life (Cole, 2004), up to 60 % of the subjects in the studies reported problems in reading colour coded charts, slides and prints. Other studies (Carter and Silverstein, 2010) describes the difficulties to distinguish and identify coloured objects in weather, financial and other maps and charts.</p><p>Colour vision deficiencies are common, where congenital CVD affects about 8 % of the male population and 0.4 % of the female population. In addition, colour vision and colour perception may be affected by medical conditions or injury (acquired CVD) and situational conditions (situation induced CVD).</p><p>Reviews of visual usability and accessible map design conclude that few maps appear to have been designed with CVD users in mind (Cartwright, 2015) and that the design efforts or research of accessible colours palettes for CVD observers are mostly limited to thematic maps such as choropleths (Kvitle, 2018).</p><p>Daltonization methods are image processing methods to automatically enhance information in existing images. A common enhancement method is re-colouring, changing the colours in the original image to make be more distinguishable to the CVD observers. The daltonization method targets a specific type of CVD, and may also have been designed for specific applications (natural images, scientific images, information graphics etc). Therefore, the evaluation of the methods is often based on a limited set of test images. Using one specific map image as input will give very different results based on the daltonization methods.</p><p>The aim of the work is primarily to examine how the colour palettes in a map are altered by different daltonization methods. Second, the aim is to explore how different map types are influenced by the daltonization methods and to propose requirements and guidelines for test images for future work.</p><p> The set of test images in this work includes</p><ul><li>Information graphics (such as a tube map).</li><li>Choropleth map.</li><li>Reference map based on different map providers.</li></ul><p> To illustrate the visual differences, CVD simulation methods are applied on the original images and the daltonized versions of the images.</p>


2017 ◽  
Author(s):  
Daniel Kaiser ◽  
Marius V. Peelen

AbstractTo optimize processing, the human visual system utilizes regularities present in naturalistic visual input. One of these regularities is the relative position of objects in a scene (e.g., a sofa in front of a television), with behavioral research showing that regularly positioned objects are easier to perceive and to remember. Here we use fMRI to test how positional regularities are encoded in the visual system. Participants viewed pairs of objects that formed minimalistic two-object scenes (e.g., a “living room” consisting of a sofa and television) presented in their regularly experienced spatial arrangement or in an irregular arrangement (with interchanged positions). Additionally, single objects were presented centrally and in isolation. Multi-voxel activity patterns evoked by the object pairs were modeled as the average of the response patterns evoked by the two single objects forming the pair. In two experiments, this approximation in object-selective cortex was significantly less accurate for the regularly than the irregularly positioned pairs, indicating integration of individual object representations. More detailed analysis revealed a transition from independent to integrative coding along the posterior-anterior axis of the visual cortex, with the independent component (but not the integrative component) being almost perfectly predicted by object selectivity across the visual hierarchy. These results reveal a transitional stage between individual object and multi-object coding in visual cortex, providing a possible neural correlate of efficient processing of regularly positioned objects in natural scenes.


2018 ◽  
Author(s):  
Niru Maheswaranathan ◽  
Lane T. McIntosh ◽  
Hidenori Tanaka ◽  
Satchel Grant ◽  
David B. Kastner ◽  
...  

AbstractUnderstanding how the visual system encodes natural scenes is a fundamental goal of sensory neuroscience. We show here that a three-layer network model predicts the retinal response to natural scenes with an accuracy nearing the fundamental limits of predictability. The model’s internal structure is interpretable, in that model units are highly correlated with interneurons recorded separately and not used to fit the model. We further show the ethological relevance to natural visual processing of a diverse set of phenomena of complex motion encoding, adaptation and predictive coding. Our analysis uncovers a fast timescale of visual processing that is inaccessible directly from experimental data, showing unexpectedly that ganglion cells signal in distinct modes by rapidly (< 0.1 s) switching their selectivity for direction of motion, orientation, location and the sign of intensity. A new approach that decomposes ganglion cell responses into the contribution of interneurons reveals how the latent effects of parallel retinal circuits generate the response to any possible stimulus. These results reveal extremely flexible and rapid dynamics of the retinal code for natural visual stimuli, explaining the need for a large set of interneuron pathways to generate the dynamic neural code for natural scenes.


2017 ◽  
Vol 65 (4) ◽  
pp. 240 ◽  
Author(s):  
L. S. Umbrello ◽  
P. A. Woolley ◽  
M. Westerman

The status of Pseudantechinus roryi relative to its congeners has been determined from DNA sequences obtained from both nuclear and mitochondrial gene loci. Although all other recognised species of Pseudantechinus form reciprocally monophyletic lineages in phylogenetic analyses, individuals identified in museum collections as Ps. roryi (including type specimens) were indistinguishable from those identified as Ps. macdonnellensis. Ps. roryi is thus considered to be a synonym of Ps. macdonnellensis. Neighbour-joining network analyses failed to reveal any clear biogeographic differences between populations of Ps. macdonnellensis other than some evidence of isolation by distance.


2021 ◽  
Vol 8 (32) ◽  
pp. 2962-2967
Author(s):  
Rinki Saha ◽  
Indrajit Sarkar ◽  
Tamojit Chatterjee ◽  
Sandip Samaddar ◽  
Suman Chandra Sen

BACKGROUND Colour vision is a function of three types of cone pigments present in the retina. Colour vision deficiency is an important disorder of vision that may pose a handicap to the performance of an affected individual. The prevalence of colour blindness varies in different geographical areas. The identification and estimation of the prevalence of colour vision deficiency in school-going children will help to educate and guide the caregivers to help the children in selecting their profession. This study was done to estimate the prevalence, sex distribution, and types of colour vision deficiency among school-going children of 5 to 15 years. METHODS A cross-sectional observational study was done among 500 students to evaluate the colour vision during the period from 1st January 2018 to 30th June 2019 at the Regional Institute of Ophthalmology, Kolkata. Ishihara’s pseudo isochromatic colour vision chart 38th edition was used to assess the school children for colour vision status. The children who were found to be colour blind were further classified into degree and types of colour vision deficiency. RESULTS A total of 500 students (250 male & 250 female) of surrounding schools, in the age group of 5 years to 15 years, were screened. 480 students (96 %) had normal colour vision while 20 (4 %) students were found to have defective colour vision. Prevalence (4 %) for colour blindness was found to be higher in males (3.6 %) than females (0.4 %). It was observed that out of 20 (4 %) colour-blind subjects 3.6 % were protanopes and 0.4 % were deuteranopes. CONCLUSIONS The present study shows the prevalence of colour blindness found to be quite low (4 %) and more common in males (3.6 %) in comparison to females (0.4 %). Protanomaly (3.6 %) was more common than deuteranomaly (0.4 %). KEYWORDS Colour Blindness, Protanomaly, Deuteranomaly, School Children


Secret Worlds ◽  
2021 ◽  
pp. 53-84
Author(s):  
Martin Stevens

This chapter explores how vision is used by animals and the diversity in ways of seeing. It first details how colour vision works, focusing on the example of honeybees, which, like humans, are trichromatic and have good colour vision. Bees have a dedicated ultraviolet (UV) receptor, and then one for seeing shortwave (blue) and mediumwave (green) light. Other animals deviate more substantially, in that they have either more or fewer receptors used in colour vision, and hence different ‘dimensions’ of colour perception. The chapter then considers how jumping spiders use UV vision in identifying known or suitable prey species, as well as in mating. It also looks at polarisation vision in mantis shrimp. Mantis shrimp are bizarre in the number of receptors they have, each sensitive to different parts of the light spectrum. Finally, the chapter assesses how toads recognize prey from non-prey. The toad’s visual system acts as a ‘feature detector’ based on several stages of visual processing, producing a quick and appropriate response to a set of criteria that reliably encode objects of particular importance—in this case, food.


Sign in / Sign up

Export Citation Format

Share Document